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Background: Misinformation - What is it?
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wrong, incorrect, inaccurate, etc.

Mis · information
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Background: Misinformation - Example
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An ‘extremely credible source’ has called my 
office and told me that @BarackObama’s birth 
certificate is a fraud.
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Background: Information Veracity
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An ‘extremely credible source’ has called my 
office and told me that @BarackObama’s birth 
certificate is a fraud.
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Background: Fact-Checking - Example
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Background: User Comments - Example

07

An ‘extremely credible source’ has called my office and told 
me that @BarackObama’s birth certificate is a fraud.

An ‘extremely credible source’ has told me that Donald 
Trump’s presidency is a fraud.

https://www.snopes.com/fact-check/birth-certificate

Lol. Sure. Was it someone from Fox News?
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Background: User Comments - Linguistic Signals
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An ‘extremely credible source’ has called my office and told 
me that @BarackObama’s birth certificate is a fraud.

An ‘extremely credible source’ has told me that Donald 
Trump’s presidency is a fraud.

https://www.snopes.com/fact-check/birth-certificate

Lol. Sure. Was it someone from Fox News?

Fake

Fact

Laughter
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Background: Research Goal
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Systematically analyze such linguistic signals.
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Macro (previous work): 
Changed outcome of the 2016 US presidential election?

— Probably NO (Allcott et al. 2017; Guess et al 2018).


Micro (our focus): 
Twisted facts       Reduce trust?

Inflammatory language       Discourage reasoned conservation?


Signals in user comments indicating these effects? 

Background: Why Do We Care? - Misinformation

10
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Background: Why Do We Care? - Fact-Checking
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Corrective effect: 
Changing people’s beliefs (Fridkin et al. 2015; Porter et al. 2018).


“Backfire” effect: 
Leaning stronger to false beliefs (Wood et al. 2016; Haglin et al. 2018).


Signals in user comments indicating these effects? 
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Background: Research Questions
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Do users exhibit different linguistic signals — 

RQ1). — under posts with different veracity (from true to false)? 
RQ1a). Misinformation-awareness signals?

RQ1b). Emotional and topical signals?


RQ2). — before and after a post is fact-checked? 
RQ2a). Signals indicating corrective effect?

RQ2b). Signals indicating “backfire" effect?
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Outline
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Data: Framework
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Fact-check articles           Social media posts           User comments
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Data: Fact-Check Articles
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Fact-check articles           Social media posts           User comments
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14,184 articles from                      , 11,345 from              ;

5,303 were sourced from YouTube      , Facebook      or Twitter     .
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Data: Social Media Posts
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Fact-check articles           Social media posts           User comments

31% posts were deleted;

82% had veracity <= 0 (mostly false or false).
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Data: User Comments
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Fact-check articles           Social media posts           User comments

1,672,687 from Facebook      ;


113,687 from Twitter      ;


828,000 from YouTube      . 
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Methods: How?
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Existing lexicons: 

EmoLex 
(Plutchik’s wheel of emotions)


LIWC  
(most extensively used)


…… 
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Methods: Problem
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Existing lexicons: 

EmoLex 
(Plutchik’s wheel of emotions)


LIWC  
(most extensively used)


…… 

Not context-specific: 

No emojis;

No fake / fact clusters;

Limited set of swear words;

……
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Methods: ComLex
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A new context-specific lexicon: ComLex
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Methods: Words

hoax

             scam


      conspiracy


                 pew

  snopes


      politifact      

                       fact


             n—ga

f—g

                redn—k


           💩 

😡      👎
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Methods: Word2Vec

hoax

             scam


      conspiracy


                 pew

  snopes


      politifact      

                       fact


             n—ga

f—g

                redn—k


           💩 

😡      👎


23



Linguistic Signals under Misinformation and Fact-Checking: Evidence from User Comments on Social Media S. Jiang & C. Wilson

Northeastern University CSCW 2018

Methods: Clustering

hoax

             scam


      conspiracy


                 pew

  snopes


      politifact      

                       fact


             n—ga

f—g

                redn—k


           💩 

😡      👎


24



Linguistic Signals under Misinformation and Fact-Checking: Evidence from User Comments on Social Media S. Jiang & C. Wilson

Northeastern University CSCW 2018

Methods: Manual Labeling

hoax

             scam


      conspiracy


                 pew

  snopes


      politifact      

                       fact


             n—ga

f—g

                redn—k


 Fact [n.] Fake [n.]

Emoji [angry]

Swear [hate speech]

           💩 

😡      👎
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Methods: Validation
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Manually selected 56 clusters           ComLex.


1). Human evaluation;

2). ComLex with LIWC (Pennebaker et al. 2015) and 
Empath (Fast et al. 2016);

3). Application and generalization (Pang et al. 2002; 
Ott et al. 2011).


(More details in our paper.)
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Results: RQ1) Misinformation
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Do users exhibit different linguistic signals  
under posts with different veracity (from true to false)? 
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Results: Misinformation - Awareness
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From true to fake, more likely to be aware of misinformation: 

 Fake   [v. & adj.]    (fake, mislead, fabricate, …)                       

 Fake   [n., bias]     (propaganda, rumor, distortion, …)    

 Fake   [n., false]    (hoax, scam, conspiracy, …)         

e.g., “this is fake news”, “this is brainwash propaganda”


From true to fake, trust decreases: 

 Trust  [EmoLex]    (accountable, lawful, scientific, …)   
           *** p < 0.001

          ** p < 0.01

          * p < 0.05
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Results: Misinformation - Emojis
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From true to fake, emoji usage increases: 

 Emoji   [gesture]       (🙏, 👋, 👊, …)                                   

 Emoji   [laughter]      (😂, 🤣, 🙄, …)                             

 Emoji   [happiness]  (😃, 😊, 😍, …)                       

 Emoji   [doubt]         (❓, 🤷, /, …)                 

 Emoji   [sadness]     (💔, 😢, 😭, …)            

 Emoji   [surprise]      (😱, 😳, 😲, …)        

 Emoji   [anger]          (👎, 😡, 💩, …)  

e.g., “so ridiculous 😂😂”, “really? 😭”, “i smell bull 💩”.


          *** p < 0.001

          ** p < 0.01

          * p < 0.05
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Results: Misinformation - Swear
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From true to fake, swear increases: 

 Swear   [informal, common]      (fuck, fuckin, damn, …)                     

 Swear   [informal, moderated]   (*, sh, fu, …)                                  

 Swear   [hate speech]               (n—ga, f—g, redn—k, …)          

 Swear   [informal, other]            (bastard, fucktards, …)        

 Swear   [LIWC]                          (fuck, fu, dumbfuck, …)    

 Swear   [informal, belittling]      (moron, fool, loser, …)  

          *** p < 0.001

          ** p < 0.01

          * p < 0.05
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Results: Misinformation - Objectivity
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From true to fake, subjectivity increase: 

 Superlative    [compare]     (dumbest, smartest, craziest, …)   

e.g., “dumbest thing i’ve seen today”.


From true to fake, objectivity decreases: 

 Causal            [LIWC]         (why, because, therefore, …)         

 Comparative  [compare]   (better, bigger, harder, …)      

e.g., “she would do better”.           *** p < 0.001


          ** p < 0.01

          * p < 0.05
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From true to fake, less likely to discuss concrete topics: 

 Work         [LIWC]          (work, earn, payroll, …)                                

 Financial   [economy]    (bill, budget, policy, …)                            

 Money      [LIWC]          (financially, worth, income, …)              

 Power       [LIWC]          (worship, command, mighty, …)       

 Financial   [monetary]   (money, tax, dollar, …)                    

 Reward     [LIWC]         (promotion, award, success, …)  

 Society     [civilian]       (people, public, worker, …)     

 Achieve    [LIWC]         (award, honor, prize, …)      

 Health      [insurance]   (health, healthcare, …)    

 Admin      [n.]               (attorney, secretary, …) 


Results: Misinformation - Topics

33

          *** p < 0.001

          ** p < 0.01

          * p < 0.05
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Results: RQ2) Fact-Checking
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Do users exhibit different linguistic signals 
before and after a post is fact-checked? 
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Results: Fact-Checking - Corrective
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After fact-checking, more likely to be aware of misinformation: 

 Fact     [n.]              (fact, evidence, data, …)                   

 Fake    [v. & adj.]     (fake, mislead, fabricate, …)       

After fact-checking, less doubtful emojis: 

 Emoji   [doubt]        (❓, 🤷, /, …)      


Note: Less significant - limited corrective effect?           *** p < 0.001

          ** p < 0.01

          * p < 0.05
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Results: Fact-Checking - “Backfire”
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After fact-checking, more likely to use swear words: 

 Swear   [informal, common]     (fuck, fuckin, damn, …)        


Note: Less significant, only 1 swear cluster - limited “backfire” effect?

          *** p < 0.001

          ** p < 0.01

          * p < 0.05
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Results: “Backfire” - Example

37

“Obamacare” mandates that no one over 75 will be given 
major medical procedures unless approved by an ethics panel.

What it has to do with moron is you are a fucking sheep that 
believes everything he’s told… and everything you see that 
doesn’t fit what you want to hear is “propaganda” then you 
mention snopes and politifact like its the official source for 
truth… Youtube videos are a pretty good source for truth…

?

View fact-checking itself as biased in general,  
rather than “backfire” because of individual fact-check articles.
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Results: Fact-Checking - Reference
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politifactref :  6.68% snopesref :  6.18%

Only ~6% fact-checked posts have comments 
referring to the fact-check article.
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Discussion: Application

40

Misinformation detection:  
(Spearman correlation)


Random guess:                      0.000

Neural Nets using EmoLex:   0.081

Neural Nets using LIWC:        0.116

Neural Nets using ComLex:   0.214 
Maximum:                               1.000


(More details in our paper.)

Not good.
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Discussion: Application

41

Misinformation detection:  
(Spearman correlation)


Random guess:                      0.000

Neural Nets using EmoLex:   0.081

Neural Nets using LIWC:        0.116

Neural Nets using ComLex:   0.214 
Maximum:                               1.000


(More details in our paper.)

Not good.

Text + Meta: 0.20-0.27 
(Yang 2017)
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Discussion: Limitations

42

Only focus on social media.             Other news sources? 

Only focus on veracity.            Intentionality? 
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Discussion: Takeaways
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Users do exhibit different linguistic signals — 

RQ1). — under posts with different veracity (from true to false). 
RQ1a). More misinformation-awareness signals.

RQ1b). More emojis, more swear words, less concrete topics, etc.


RQ2). — after a post is fact-checked. 
RQ2a). Some signals indicating corrective effect.

RQ2b). Some signals indicating “backfire" effect.




Data & lexicon & code available at: misinfo.shanjiang.me

A Blog highlighting findings available on CSCW Medium 

Thanks!
Shan Jiang 

Email: sjiang@ccs.neu.edu

Northeastern University
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mailto:sjiang@ccs.neu.edu
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Data: Fact-Check Agreement

Appendix 2

Fact-check articles           Social media posts           User comments

41 posts are fact-checked by both                       and              ;

They highly agree with each other (Spearman r = 0.671***).
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Evaluation: Human Evaluation

Appendix 3

Human Evaluation           Comparing with Others          Application 

Rating 1: Semantic Closeness (1-5), mean: 4.506 
Rating 2: Labeling Accuracy (1-5), mean: 4.359
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Evaluation: Comparing with Others

Appendix 4

Human Evaluation           Comparing with Others          Application 

Similar Cluster with LIWC: 
Family (Pearson r = 0.883***).

Pronoun (Pearson r = 0.877***).

Preposition (Pearson r = 0.833***).


Similar Cluster with Empath: 
Monster (Pearson r = 0.949***).

Timidity (Pearson r = 0.904***).

Ugliness (Pearson r = 0.908***).




Linguistic Signals under Misinformation and Fact-Checking: Evidence from User Comments on Social Media S. Jiang & C. Wilson

Northeastern University CSCW 2018

Human Evaluation           Comparing with Others          Application 

Evaluation: Application

Appendix 5

(Ott et al. 2011)


(Pang et al. 2002)



