Northeastern University

Shan Jiang and Christo Wilson

- Methods
- Discussion

Outline

• Background

• Results

Background: Misinformation - What is it?

Mis · information

wrong, incorrect, inaccurate, etc.

Background: Misinformation - Example

An 'extremely credible source' has called my office and told me that @BarackObama's birth certificate is a fraud.

Background: Information Veracity

Background: Fact-Checking - Example

CLAIM

Barack Obama's birth certificate is a forgery. See Example(s)

RATING

POLITIFACT

Share The Facts

Donald Trump Presidential candidate

Says President Obama's "grandmother in Kenya said he was born in Kenya and she was there and witnessed the birth."

In an interview. - Thursday, April 7, 2011

SHARE **READ MORE**

0

CSCW 2018

Background: User Comments - Example

An 'extremely credible source' has called my office and told me that @BarackObama's birth certificate is a fraud.

An 'extremely credible source' has told me that Donald Trump's presidency is a fraud. Lol. Sure. Was it someone from Fox News? https://www.snopes.com/fact-check/birth-certificate

Background: User Comments - Linguistic Signals

Background: Research Goal

Systematically analyze such linguistic signals.

Background: Why Do We Care? - Misinformation

Macro (previous work): Changed outcome of the 2016 US presidential election? - Probably NO (Allcott et al. 2017; Guess et al 2018).

Micro (our focus): Twisted facts Reduce trust?

Signals in user comments indicating these effects?

Inflammatory language — Discourage reasoned conservation?

Background: Why Do We Care? - Fact-Checking

Corrective effect:

"Backfire" effect:

Signals in user comments indicating these effects?

Changing people's beliefs (Fridkin et al. 2015; Porter et al. 2018).

Leaning stronger to false beliefs (Wood et al. 2016; Haglin et al. 2018).

Background: Research Questions

Do users exhibit different linguistic signals —

RQ1a). Misinformation-awareness signals? RQ1b). Emotional and topical signals?

RQ2). – before and after a post is fact-checked? RQ2a). Signals indicating corrective effect? RQ2b). Signals indicating "backfire" effect?

- RQ1). under posts with different veracity (from true to false)?

Discussion

S. Jiang & C. Wilson

Outline

• -Background

Data: Framework

Fact-check articles Social media posts — User comments

Northeastern University

User comments

Data: Social Media Posts

Fact-check articles

31% posts were deleted;

Social media posts

User comments

82% had veracity <= 0 (mostly false or false).

Data: User Comments

Fact-check articles

113,687 from Twitter **()**;

Social media posts

- **1,672,687** from Facebook **()**;
- 828,000 from YouTube .

S. Jiang & C. Wilson

Outline

Background

Methods

Results

Discussion

Methods: How?

Existing lexicons:

EmoLex (Plutchik's wheel of emotions)

LIWC (most extensively used)

.

Methods: Problem

Existing lexicons:

EmoLex (Plutchik's wheel of emotions)

LIWC (most extensively used)

- - - - - -

Not context-specific:

No emojis; No fake / fact clusters; Limited set of swear words;

.

Methods: ComLex

A new context-specific lexicon: ComLex

Methods: Words

pew snopes

politifact fact

hoax scam

conspiracy

Methods: Validation

Manually selected 56 clusters ComLex.

1). Human evaluation; Empath (Fast et al. 2016); Ott et al. 2011).

(More details in our paper.)

2). ComLex with LIWC (Pennebaker et al. 2015) and 3). Application and generalization (Pang et al. 2002;

S. Jiang & C. Wilson

Outline

- -Background

 - Results
- Discussion

Results: RQ1) Misinformation

Do users exhibit different linguistic signals under posts with different veracity (from true to false)?

Results: Misinformation - Awareness

From true to fake, more likely to be aware of misinformation:

Fake [v. & adj.] (fake, mislead, fabricate, ...) **Fake** [n., bias] (propaganda, rumor, distortion, ...) **Fake** [n., false] (hoax, scam, conspiracy, ...) e.g., "this is fake news", "this is brainwash propaganda"

From true to fake, trust decreases:

Trust [EmoLex] (accountable, lawful, scientific, ...)

Results: Misinformation - Emojis

From true to fake, emoji usage increases:

Emoji	[gesture]	(᠕, 《) ,
Emoji	[laughter]	(2, 2), 😳
Emoji	[happiness]	(😃, 😋), 🕑,
Emoji	[doubt]	(?, 🖗	r, 🖗,
Emoji	[sadness]	(💜, 😧), 🔞,
Emoji	[surprise]	(??, 0) , 😳
Emoji	[anger]	(👎, 🧿	, 💩
e.g., "so	o ridiculous 🍕	, " ,	'reall

Results: Misinformation - Swear

From true to fake, swear increases:

Swear	[informal, common]
Swear	[informal, moderated]
Swear	[hate speech]
Swear	[informal, other]
Swear	[LIWC]
Swear	[informal, belittling]

Results: Misinformation - Objectivity

From true to fake, subjectivity increase:

[compare] (dumbest, smartest, craziest, ...) Superlative e.g., "dumbest thing i've seen today".

From true to fake, objectivity decreases:

Causal [LIWC] (why, because, therefore, ...) **Comparative** [compare] (better, bigger, harder, ...) e.g., "she would do better".

Results: Misinformation - Topics

From true to fake, less likely to discuss concrete topics:

Work	[LIWC]	(work,
Financial	[economy]	(bill, bu
Money	[LIWC]	(financi
Power	[LIWC]	(worsh
Financial	[monetary]	(money
Reward	[LIWC]	(promo
Society	[civilian]	(people
Achieve	[LIWC]	(award,
Health	[insurance]	(health,
Admin	[n.]	(attorne

Results: RQ2) Fact-Checking

Do users exhibit different linguistic signals before and after a post is fact-checked?

Results: Fact-Checking - Corrective

After fact-checking, more likely to be aware of misinformation:

Fact	[n.]	(fact, evide
Fake	[v. & adj.]	(fake, misle

After fact-checking, less doubtful emojis:

Emoji [doubt] (?, \, \, \, \, \, \)

Note: Less significant - limited corrective effect?

nce, data, ...) ead, fabricate, ...)

Results: Fact-Checking - "Backfire"

After fact-checking, more likely to use swear words:

[informal, common] Swear

(fuck, fuckin, damn, ...)

Note: Less significant, only 1 swear cluster - limited "backfire" effect?

Results: "Backfire" - Example

Snopes

"Obamacare" mandates that no one over 75 will be given major medical procedures unless approved by an ethics panel

What it has to do with moron is you are a fucking sheep that believes everything he's told... and everything you see that doesn't fit what you want to hear is "propaganda" then you mention snopes and politifact like its the official source for truth... Youtube videos are a pretty good source for truth...

View fact-checking itself as biased in general, rather than "backfire" because of individual fact-check articles.

2

Results: Fact-Checking - Reference

referring to the fact-check article.

Only ~6% fact-checked posts have comments

S. Jiang & C. Wilson

Outline

- -Background

 - Discussion

Discussion: Application

Misinformation detection: (Spearman correlation)

Random guess: Neural Nets using EmoLex: Neural Nets using LIWC: Neural Nets using **ComLex**: Maximum:

(More details in our paper.)

Discussion: Application

Misinformation detection: (Spearman correlation)

Random guess: Neural Nets using **EmoLex**: Neural Nets using LIWC: Neural Nets using **ComLex**: Maximum:

(More details in our paper.)

Discussion: Limitations

Only focus on social media. — Other news sources?

Only focus on veracity. Intentionality?

Discussion: Takeaways

Users do exhibit different linguistic signals —

RQ1). — under posts with different veracity (from true to false). RQ1a). More misinformation-awareness signals. RQ1b). More emojis, more swear words, less concrete topics, etc.

RQ2). — after a post is fact-checked. RQ2a). Some signals indicating corrective effect. RQ2b). Some signals indicating "backfire" effect.

Data & lexicon & code available at: misinfo.shanjiang.me A Blog highlighting findings available on CSCW Medium

Shan Jiang Email: <u>sjiang@ccs.neu.edu</u>

Northeastern University

Thanks!

References

Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211-36.

Guess, A., Nyhan, B., & Reifler, J. (2018). Selective Exposure to Misinformation: Evidence from the consumption of fake news during the 2016 US presidential campaign. European Research Council. Fridkin, K., Kenney, P. J., & Wintersieck, A. (2015). Liar, liar, pants on fire: How fact-checking influences citizens' reactions to negative advertising. Political Communication, 32(1), 127-151. Porter, E., Wood, T. J., & Kirby, D. (2018). Sex trafficking, Russian infiltration, birth certificates, and pedophilia: A survey experiment correcting fake news. Journal of Experimental Political Science, 5(2), 159-164. Wood, T., & Porter, E. (2016). The elusive backfire effect: Mass attitudes' steadfast factual adherence. Political Behavior, 1-29.

Haglin, K. (2017). The limitations of the backfire effect. Research & Politics, 4(3), 2053168017716547. Pennebaker, J.W., Booth, R.J., Boyd, R.L., & Francis, M.E. (2015). Linguistic Inquiry and Word Count: LIWC2015. Fast, E., Chen, B., & Bernstein, M. S. (2016). Empath: Understanding topic signals in large-scale text. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 4647-4657). ACM. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up?: sentiment classification using machine learning techniques. In Proceedings of the ACL.

Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011). Finding deceptive opinion spam by any stretch of the imagination. In Proceedings of ACL-HLT.

Wang, W. Y. (2017). " Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection. In Proceedings of ACL.

Data: Fact-Check Agreement

Social media posts — User comments

Appendix 2

Evaluation: Human Evaluation

Comparing with Others Application

Rating 1: Semantic Closeness (1-5), mean: 4.506 Rating 2: Labeling Accuracy (1-5), mean: 4.359

Evaluation: Comparing with Others

Human Evaluation

Similar Cluster with Empath: Monster (Pearson $r = 0.949^{***}$). Timidity (Pearson $r = 0.904^{***}$). Ugliness (Pearson $r = 0.908^{***}$).

Application

Similar Cluster with LIWC: Family (Pearson $r = 0.883^{***}$). Pronoun (Pearson $r = 0.877^{***}$). Preposition (Pearson $r = 0.833^{***}$).

Η

Evaluation: Application					
uman Evaluation	Comparing with (Others	Application		
Dataset	Lexicon	Model	Accuracy*		
	Human judges		56.9% - 61.9%		
	GI	SVM	73.0%		
Hotel reviews	LIWC		76.8%		
(Ott et al. 2011)	ComLex		81.4%		
	Learned unigrams		88.4%		
	Human judges		58.0% - 69.0%		
Movie reviews	ComLex	C 7777	72.3%		
(Pang et al. 2002)	Learned unigrams		72.8%		

