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Abstract
The proliferation of online misinformation has been raising
increasing societal concerns about its potential consequences,
e.g., polarizing the public and eroding trust in institutions.
These consequences are framed under the public’s susceptibil-
ity to such misinformation — a narrative that needs further in-
vestigation and quantification. To this end, our paper proposes
an observational approach to model and measure expressed
(dis)beliefs in (mis)information by leveraging social media
comments as a proxy. We collect a sample of tweets in re-
sponse to (mis)information and annotate them with (dis)belief
labels, explore the dataset using lexicon-based methods, and
finally build classifiers based on the state-of-the-art neural
transfer-learning models (BERT, XLNet, and RoBERTa). Un-
der a domain-specific thresholding strategy for unbiasedness,
the best-performing classifier archives macro-F1 scores around
0.86 for disbelief and 0.80 for belief. Applying the classifier,
we conduct a large-scale measurement study and show that,
for true/mixed/false claims on social media, 12%/14%/15% of
comments express disbelief and 26%/21%/20% of comments
express belief. In addition, our results suggest an extremely
slight time effect of falsehood awareness, a positive effect
of fact-checks to false claims, and differences in (dis)belief
across social media platforms.

1 Introduction
Misinformation, broadly defined as any false or inaccurate
information, has been spreading epidemically on social me-
dia (Lazer et al. 2018). During the 2016 US presidential elec-
tion cycle, researchers estimated that “fake news” accounted
for 6% of all news consumption (Grinberg et al. 2019), and
44% of Americans age 18 or older visited at least one untrust-
worthy website (Guess, Nyhan, and Reifler 2018). To date,
misinformation has been documented across the globe, e.g.,
in Africa (Wasserman and Madrid-Morales 2019), Asia (Kaur
et al. 2018), and Europe (Fletcher et al. 2018).

The proliferation of misinformation has been raising in-
creasing societal concerns about its potential consequences.
In the political context, fabricated stories and partisan opin-
ions may polarize the public (Levendusky 2013), alter voters’
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Disbelief

Disbelief

Belief

Belief

...Forest fires that, with proper Forest
Management, would never happen...

Uhh what..? You think the state is just
letting these fires happen and not
controlling them on purpose?

What kind of forest management can
prevent fires. Seriously?

Funny, the folks who live in forested
areas feel the same way as Trump on
this.... But limousine liberals?

Oh wow! California is finally going to
be held responsible for their bad
environmental decisions.

(a) The CA wildfire claim and
tweets expressing (dis)belief.

Claim

Disbelief

Disbelief

Belief

Belief

Mexico is paying for the Wall through
the new USMCA Trade Deal. Much of
the Wall has already been fully...

Every word of this is a lie: ✓USMCA
isn’t yet in effect ✓Mexico will not be
paying for a wall...

That's an impressive number of
contradictory bullshit excuses to
squeeze into 280 characters.

Yep. Mexico is paying for it. Thank you
Promises made promises kept!

It’s economics which Dems won’t
understand!

(b) The Mexico wall claim and
tweets expressing (dis)belief.

Figure 1: Example comments expressing (dis)belief in re-
sponse to two false claims made on Twitter.

perceptions about candidates (Allcott and Gentzkow 2017;
Epstein and Robertson 2015), and erode trust in institu-
tions (Ciampaglia et al. 2018), therefore posing a threat to the
democracy (Morgan 2018; Hochschild and Einstein 2015).

These consequences are framed under the public’s suscep-
tibility to misinformation, as the public is unable, or disin-
clined, to distinguish truth from fiction. This narrative, how-
ever, needs further investigation and quantification. Recent
surveys from the Reuters Institute and Pew Research Center
reported that the public is indeed aware of the misinforma-
tion problem, and (dis)believes certain information sources
(e.g., news outlets, politicians) more than others (Anderson
and Rainie 2017; Nielsen and Graves 2017). However, these
studies are small-scale in nature, and thus unable to quantita-
tively measure to what extent does the public (dis)believe in
(mis)information.

Complementary to these surveys, our work proposes an
observational approach as an alternate lens through which to
interrogate the public’s (dis)belief in (mis)information. Our



approach leverages social media comments as a proxy for
assessing individuals’ responses to (mis)information. Con-
sider the examples shown in Figure 1: the language used in
comments in response to claims can express signals of the
users’ (dis)belief, therefore, if modeled properly, these social
media comments can be used to measure the prevalence of
expressed (dis)belief at scale.1

The first part of this paper explores methods to model
(dis)belief expressed in comments. We start by collecting a
small sample of tweets that comment on fact-checked claims,
and then manually annotate each tweet with disbelief and
belief labels. Using this dataset, we experiment with Nat-
ural Language Processing (NLP) models. We first conduct
an exploratory analysis using lexicon-based methods, which
reveals differences in word usage (e.g., falsehood awareness
signals, positive and negative emotions) in tweets expressing
(dis)belief verses others. Next, we experiment with classifi-
cation models, including linear models with lexicon-derived
features, as well as state-of-the-art neural transfer-learning
models (e.g., BERT (Devlin et al. 2019), XLNet (Yang et al.
2019), and RoBERTa (Liu et al. 2019)). Then, we develop a
domain-specific thresholding strategy for classifiers to make
unbiased predictions compared to human experts. Under cho-
sen thresholds, the best-performing classifier achieves macro-
F1 scores around 0.86 for predicting disbelief and 0.80 for
belief. We have released our data, code, and trained models
to accelerate the development of future studies.2

The second part of the paper aims to measure expressed
(dis)belief at scale by applying the trained classifier. We run
the classifier on an existing large, unlabeled dataset of social
media comments in response to (mis)information (collected
during our prior work (Jiang and Wilson 2018)) and analyze
the estimated prevalence of expressed (dis)belief. Our results
show that:

• RQ1, overall prevalence: For true/mixed/false claims on
social media, 12%/14%/15% of comments express disbe-
lief and 26%/21%/20% of comments express belief, sug-
gesting (optimistically) increased disbelief and decreased
belief as information veracity decrease, yet (pessimisti-
cally) considerable suspicions on truthful information;

• RQ2, time effect: There is an extremely slight time effect
of falsehood awareness, where disbelief increases 0.001%
and belief decreases 0.002% per day after a false claim is
published;

• RQ3, fact-check effect: Controlling for the time effect, dis-
belief increases 5% and belief decreases 3.4% after claims
are fact-checked, suggesting a positive effect of fact-checks
on altering the prevalence of (dis)belief;

• RQ4, platform differences: There is a difference in
(dis)belief expressed across three mainstream social media
platforms (Facebook, Twitter, and YouTube).

In the rest of the paper, § 2 positions our work within
related areas, § 3 describes the data collection and annota-
tion process, § 4 experiments with NLP methods to model
expressed (dis)belief, § 5 applies the model to measure ex-

1We discuss the emphasis on expressed in § 6.1.
2Available at: https://misinfo.shanjiang.me

pressed (dis)belief and answers (RQ1–4), and finally § 6 dis-
cusses the limitations of this observational approach and
potential directions for future work.

2 Related Work
Our work to model and measure expressed (dis)belief in
(mis)information connects a rich line of literature. This sec-
tion positions our work within related misinformation studies,
and discerns our work from related NLP tasks and datasets.

2.1 (Dis)belief and (Mis)information
There is an emerging line of work focusing on the misinfor-
mation topic, ranging from its political influence (Allcott and
Gentzkow 2017; Grinberg et al. 2019; Guess, Nagler, and
Tucker 2019; Robertson et al. 2018; 2019) to algorithmic
detection (Shu et al. 2017; Zhou et al. 2019) and interven-
tion (Jiang et al. 2020; Jiang, Robertson, and Wilson 2020;
2019; Farajtabar et al. 2017; Jang and Kim 2018). Some of
these studies adopted the recent (yet controversial) term “fake
news”, while we choose to use the term “misinformation” as
it covers a broader spectrum of information veracity (e.g., par-
tial truths, as opposed to blatant lies), and is not as politicized
as “fake news”.

A key question in this literature is (RQ1) does the public
believe misinformation, and if so, to what extent? If misin-
formation is not believed, that would discount much of its
alleged influence on the public and the political process.

Insights into (RQ1) are provided by existing psychological
and sociological theories that hypothesize about the public’s
susceptibility to misinformation. Naı̈ve realism (Ward et al.
1997) and confirmation bias theory (Nickerson 1998) from
psychology suggested that people tend to believe in infor-
mation that resonates with their pre-existing (yet potentially
false) beliefs. Social identity (Stets and Burke 2000) and
normative influence theory (Kincaid 2004) from sociology
suggested that people tend to follow the norms of their estab-
lished ideological groups when responding to information,
and spread their beliefs in “socially safe” information, often
regardless of its veracity.

On the empirical side, a report from the Pew Research
Center provided evidence for these theories by conducting a
survey about trust in news outlets across the ideological spec-
trum. It found a significant correlation between (a) the self-
reported trust and (b) the ideological proximity between the
audience and the news outlet, e.g., the liberal audience tended
to trust the New York Times while conservative audiences did
not, and vice-versa for Fox News (Mitchell et al. 2014). More
recent reports from the Reuters Institute (Nielsen and Graves
2017) and Pew Research Center (Anderson and Rainie 2017)
surveyed in more depth about the socio-psychological mech-
anisms behind (dis)belief and (mis)information, and reported
that the public is indeed aware of the misinformation prob-
lem. Despite the valuable evidence they offered, these qual-
itative and experimental studies are small-scale, and they
required direct interactions with the participants, therefore
potentially suffering from the Hawthorne Effect where par-
ticipants modified their behaviors under their awareness of
being surveyed (McCarney et al. 2007).



Quantitative research on this topic is relatively limited.
(Jiang and Wilson 2018) analyzed social media comments
in response to misinformation using an unsupervised ap-
proach, and showed that certain linguistic signals suggesting
(dis)belief (e.g., “fake”, “dumbest”) were distributed differ-
ently in response to claims with differing veracity. In § 4.1,
we verify that these signals do indeed correlate with the likeli-
hood to express (dis)belief, but they are insufficient predictors
to judge if a comment expresses (dis)belief.3

In addition to (RQ1), we also investigate two follow-up
research question. The first is (RQ2) if there is a time effect
for expressed (dis)belief in misinformation, where the public
gradually realizes the truth after a claim is made, and there-
fore loses trust in false claims over time. This question is
raised in light of recent work that leverages the “wisdom of
the crowd” for misinformation detection (Tschiatschek et al.
2018; Kim et al. 2018).

The second question is (RQ3) if fact-checks have an ef-
fect on expressed (dis)belief, after a false claim is judged
by a certified fact-checker (e.g., Snopes, PolitiFact) (Poynter
2020). This question continues an ongoing debate on the
importance, or lack thereof, of fact-checking in the misinfor-
mation ecosystem (Tambuscio et al. 2015; Garrett, Nisbet,
and Lynch 2013).

2.2 Related NLP Tasks and Datasets
In the realm of computational social science, automatically
scoring a dataset is a common prerequisite for hypothesis
testing. Existing studies that used language as a signal mostly
adopted a simple, straightforward scoring method that lever-
aged unigram-based bag-of-words (BoW) models (Gentzkow,
Kelly, and Taddy 2019; Hu et al. 2019). This method, how-
ever, could have limited applicability for our task, as identi-
fying expressed (dis)belief could be more subtle than their
tasks (e.g., identifying ideology), and therefore requires mod-
els to comprehend entire statements as a whole instead of
averaging signals of unigrams.

In the realm of NLP, however, such scoring is the na-
tive output of probabilistic classifiers, and the above method
is equivalent to linear models with BoW features on a se-
quence classification problem (Xing, Pei, and Keogh 2010).
More recent and better solutions for this task use neural
architectures (Lai et al. 2015; Zhou, Wan, and Xiao 2016)
and pre-trained transfer-learning models (Devlin et al. 2019;
Yang et al. 2019; Liu et al. 2019).

Specific applications of the sequence classification prob-
lem are defined within domain-specific datasets. Although
there is, to our knowledge, no existing dataset on detecting
(dis)belief, there are proposed NLP tasks that are related to
our task. Stance detection, for example, aims to determine
the for-or-against stance in comments for a two-sided argu-
ment (e.g., marijuana, gay marriage) (Hasan and Ng 2013;
Joseph et al. 2017), and, in the political context, it often over-
laps with ideology identification (Preoţiuc-Pietro et al. 2017).
Intuitively, this task is similar to our problem, however, we do
observe conflicting cases in our data where comments shar-

3As some intuitive examples, the comments shown in Figure 1
have no obvious unigram signals signifying (dis)belief.

ing the same ideological stance provide informative counter-
evidence on the claims and therefore express disbelief.

Similarly, classifications of other creative languages such
as sarcasm (González-Ibánez, Muresan, and Wacholder
2011), satire (Burfoot and Baldwin 2009), irony (Farı́as, Patti,
and Rosso 2016), and humor (Yang et al. 2015) share certain
commonalities with our task, but none of them fulfills our
need to identify (dis)belief.

3 Data
To model (dis)belief in (mis)information, we first collect
a sample of tweets written in response to claims that are
potentially misinformation, and then manually annotate them
with belief and disbelief labels.

3.1 Collecting Comments on Misinformation

Finding (mis)information claims. PolitiFact is an IFCN-
certified fact-checking agency that evaluates the veracity of
wide-spread claims online (Poynter 2020). We read through
all of PolitiFact’s fact-check articles written between January
1 to June 1, 2019 and manually found the ones whose claims
originated from Twitter. We recorded the IDs of the tweets
containing these claims.

Collecting comments in response to claims. Using the
above fact-checked tweets as seeds, we queried an archived
1% sample of the tweet stream (Liu, Kliman-Silver, and Mis-
love 2014) and found all comments to the seed tweets. In
Twitter’s terminology, these comments include “replies” and
“retweets with comments” (i.e., quoted tweets) but excludes
other retweets (Twitter 2020). Note that we only keep com-
ments whose text content is non-empty, as we aim to identify
expressed (dis)belief using language features.

To filter out noise, we keep only the claims that we could
link to >50 comments, which resulted in 18 claims with
6,809 comments. The short names of these claims are dis-
played as the x-tick labels in Figure 2. The full description of
each claim and corresponding fact-check articles is available
in our published dataset.

Representativeness. Although our archived 1% sample
of the tweet stream has been shown to be representative of
the Twitter ecosystem as a whole (Morstatter et al. 2013), this
dataset is not a representative sample to understand the preva-
lence of (dis)belief at scale. This is due to (a) the narrow time
period (i.e., half a year) of seed claims and comments, and
(b) the omission of other mainstream social media platforms
(e.g., Facebook, YouTube). While (a) is a common limitation
on longitudinal validity in the literature (Street and Ward
2012), (b) is less commonly considered. (Zannettou et al.
2017) reported that misinformation sharing behaviors differ
across platforms, which motivates our last research question
(RQ4) if expressed (dis)belief is distributed differently across
social media platforms.

Taken together, these two issues mean that high-level statis-
tics from this sample cannot be used to measure (dis)belief
and test related hypothesis. Hence, we leverage a much larger
dataset in § 5). However, this sample is useful to understand
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Figure 2: Inter-annotator agreement by claim. Out of 36
evaluated groups/labels, 66.7% are above 80% agreement
and 88.9% are above 70% agreement.

the language that people used to express their (dis)belief in
response to (mis)information.

3.2 Annotating (Dis)belief Labels
We annotate our unlabeled dataset of comments with belief
and disbelief labels by recruiting a group of communication-
majored undergrads and a faculty member from the commu-
nication department as the expert.

Task assignment. Annotating 6,809 tweets is a heavy task.
To reduce the workload, we grouped these tweets by the
initial claims and assigned each group of tweets to two inde-
pendent human annotators. We trained the annotators, and
then asked them to provide binary labels on each tweet in the
given group: disbelief (i.e., if the person who wrote the com-
ment does not believe the claim) and belief (i.e., if the person
who wrote the comment does believe the claim). Note that
these two labels are mutually exclusive but not necessarily
complementary, i.e., we do not expect a tweet to show both
belief and disbelief, but it can show neither.

Inter-annotator agreement. Our task assignment strategy
allows us to evaluate inter-annotator agreement at the indi-
vidual group level. We use the inter-annotator percent agree-
ment4 (i.e., the number of agreed labels over the total count)
for each group and each label, and show the results in Fig-
ure 2. Out of 36 evaluated groups/labels, 66.7% (24/36) are
above 80% agreement, 88.9% (32/36) are above 70% agree-
ment, and only two are below 60% agreement, suggesting a
high level of agreement among annotators, especially for a
relatively subjective task.

Final labels. To obtain a final label for each tweet, a faculty
member from the communication department read through
all cases where two annotators disagreed and then provided
a final judgement to break ties. This effectively makes our
annotation process a majority vote among three members.

Note that there are two straightforward ways to formulate
the (dis)belief labels: (a) a single-label quadruple-class for-
mulation, where the four possible classes are: belief, disbelief,

4Cohen’s κ is not preferred here, as (dis)belief labels are, by
our hypotheses, unevenly distributed and therefore κ’s baseline
agreement is irrelevant.
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(a) Disbelief distribution across 18 claims. The percentage of dis-
belief ranged from 0 to 62.4%, with a variance of 0.03.
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(b) Belief distribution across 18 claims. The percentage of belief
ranged from 2.8% to 91.1%, with a variance of 0.08.

Figure 3: Data overview by claim. There is large variation
in expressed (dis)belief across the 18 claims, and the distri-
butions of disbelief and belief are negatively correlated.

both, and neither; or (b) a double-label binary formulation,
where one label is belief or not and the other is disbelief or
not. Although these two formulations are equivalent here, (b)
provides us with more flexibility for classification, as it is
easy to threshold on each binary label and easy to analyze
the performance tradeoff (as we discuss in § 4.2). Thus, we
choose formulation (b) for the (dis)belief labels.

Data overview. Overall, out of 6,809 tweets, 2,399 (35.2%)
are labeled as expressing disbelief, 1,282 (18.8%) are labeled
as expressing belief, 3,128 (45.9%) are labeled as neither and
none (0%) are labeled as both. Disbelief is over-represented
in this sample (cf. the overall prevalence measured in § 5.1)
as the 18 claims in the sample contain heavy misinformation.

The distribution of (dis)belief for each claim is shown in
Figure 3. There is large variation in expressed (dis)belief
across the 18 claims, and the distributions of disbelief and
belief are, as expected, negatively correlated (Pearson r =
−0.68∗∗∗).5

4 Model

Leveraging our labeled dataset, we first conduct a lexicon-
based exploratory analysis of language used across tweets
expressing belief and disbelief, and then experiment with
NLP models to build classifiers.

5∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.



-15 -10 -5 0 5 10 15
 less in disbelief   ⟵ t⟶    more in disbelief

discrepancy (LIWC)
positive emotion (LIWC)

negation (LIWC)
negative emotion (LIWC)

fact, research, report, ... (ComLex)
stupid, dumb, ignorant, ... (ComLex)

anger (LIWC)
liar, crook, thief, ... (ComLex)
fake, false, bias, ... (ComLex)

lie, propaganda, corruption, ... (ComLex)

(a) Disbelief labels verses other. Tweets expressing disbelief con-
tains more falsehood awareness signals (e.g., “lie”, “fake”, “stupid”)
and negative emotions, and less positive emotions and discrepancy.

-15 -10 -5 0 5 10 15
 less in belief   ⟵ t⟶    more in belief

anger (LIWC)
swear (LIWC)
fake, false, bias, ... (ComLex)
stupid, dumb, ignorant, ... (ComLex)

discrepancy (LIWC)
exclamation (LIWC)

republican, democrat, gop, ... (ComLex)
people, american, man, ... (ComLex)

call, support, defend, ... (ComLex)
! , yay, bye, ... (ComLex)

(b) Belief labels verses other. Tweets expressing belief contains
more exclamation (e.g., “!”, “yay”) and discrepancy, and less false-
hood awareness signals (e.g., “lie”, “fake”, “stupid”) and negative
emotions.

Figure 4: Language difference between tweets expressing
(dis)belief and others. Significance of difference is obtained
by t-tests with p < 0.01 after Bonferroni correction. Ten
samples of significant categories of LIWC and ComLex with
their respected t-values and category names are shown for
both disbelief and belief labels.

4.1 Exploratory Analysis of Language
We start the modeling of (dis)belief by exploring the question
if tweets expressing (dis)belief use different language than
the others, and if so, what are the differences?

We adopt a lexicon-based method to explore this ques-
tion, and choose two lexicons: (a) LIWC (Tausczik and Pen-
nebaker 2010), the most widely-used lexicon for understand-
ing psychometric properties of language, containing generic
emotional and topical word categories, e.g., “anger”, “re-
ward”, “work”; and (b) ComLex (Jiang and Wilson 2018), a
more contextual lexicon built from social media comments
to misinformation, containing additional domain-specific cat-
egories, e.g., “fake”, “fact”, “hate speech”.

Each word category in the lexicon contains a set of curated
words that embody signals of the category (e.g., “sad” for
“negative emotion”). Briefly, our method works as follows:
we apply a lexicon on a tweet, which results in a frequency
fc for each category c in the lexicon, counting the overlap
between words in the tweet and words in the correspond-
ing category c. Then, at the dataset level, we compare the
distributions of such frequency between tweets expressing
(dis)belief and the others, by performing independent t-test

for E(fc). Significance is obtained by setting p < 0.01 after
Bonferroni correction on the number of categories (392 total
categories: 92 for LIWC and 300 for ComLex). Ten repre-
sentative samples of significant categories with their t-values
and category names6 are shown in Figure 4.

Figure 4a shows that tweets expressing disbelief contain
more falsehood awareness signals, including referrals to false-
hood “lie, propaganda, ...” (t = 15.6∗∗∗) and “fake, false,
...” (t = 14.2∗∗∗), referrals to the truth “fact, research, ...”
(t = 8.5∗∗∗), and negative character portraits such as “liar,
crook, ...” (t = 10.3∗∗∗) and “stupid, dumb, ...” (t = 8.7∗∗∗).
These results are intuitive and provide face-validity to the
existing linguistic study of misinformation responses, where
similar signals were used to insinuate users’ disbelief (Jiang
and Wilson 2018). In addition, tweets expressing disbe-
lief also contain more negative emotions (t = 7.6∗∗∗) and
negation (e.g., “no, not”, t = 4.3∗∗∗), less positive emo-
tions (t = −5.6∗∗∗) and discrepancy (e.g., “should, would”,
t = −6.1∗∗∗).

Figure 4b shows that tweets expressing belief contain less
falsehood awareness signals, including referrals to falsehood
“fake, false, ...” (t = −5.2∗∗∗) and negative character por-
trait “stupid, dumb, ...” (t = −4.8∗∗∗). This is intuitively the
opposite of disbelief. In addition, tweets expressing belief
also contain more exclamation (for both LIWC exclama-
tion marks, t = 4.8∗∗∗, and ComLex “!, yay, ...” category,
t = 6.6∗∗∗) and discrepancy (t = 4.6∗∗∗), and less negative
reactions such as swear (e.g., “damn, fuck”, t = −6.0∗∗∗)
and anger (e.g., “hate, kill”, t = −6.6∗∗∗).

4.2 Experiments with Classification Models
Given these observed difference in language usage, our next
question is if such difference can be used to identify tweets
that express (dis)belief? To answer this question, we experi-
ment with NLP models to build classifiers.

Chance. We first experiment with a chance classifier
where we assign random probabilities for both disbelief and
belief labels to demonstrate trivial performance baselines.

Lexicon-derived features with linear models. As a con-
tinuation of § 4.1, we run experiments using lexicon-derived
features with linear models. For each tweet, we concatenate
all mapped frequencies fc across all categories c to a vector
representation ~f (92 dimensions for LIWC and 300 for Com-
Lex), and then feed these vector representations to a Logistic
Regression (LR) layer for classification.

These models should perform better than trivial baselines,
as they include the language signals we observed in § 4.1.
However, their performance is still inherently limited, as
such methods only capture the semantics of unigrams while
ignoring the dependency between words (e.g., co-reference,
phrases). Thus, these models are incapable of comprehending
an entire tweet at the sequence level.

Neural transfer-learning models. To boost performance,
we embed the entire sequence and leverage state-of-the-

6ComLex has some unnamed categories, in which case we use
three words in that category as the category name.



art neural transfer-learning (Pan and Yang 2009) methods
for the task. We experiment with three pre-trained models:
BERT (Devlin et al. 2019), XLNet (Yang et al. 2019), and
RoBERTa (Liu et al. 2019).

This method follows a pre-training-fine-tuning paradigm.
During the pre-training phase, transformer (Vaswani et al.
2017) or transformer-XL (Dai et al. 2019) based models
are trained on large, unlabeled corpus with certain objec-
tives, e.g., BERT and RoBERTa are trained to predict missing
words in sentences, XLNet is trained to predict last tokens
in factorization orders of sentences. During this process, a
randomly initialized model is adjusted by back-propagation
of loss, and its weights are progressively updated to embed
knowledge of human language.

During the fine-tuning phase, models are initialized with
pre-trained weights and then re-train on labeled data over
specific tasks. This process tunes an already sophisticated
model to perform specific downstream tasks, thus the model
is expected to achieve high performance on a small labeled
dataset.

To experiment with these neural models, we first pre-
process tweets through the same pipeline designed in the
pre-training phase, which includes tokenizing tweets at the
sub-word level using specific tokenizer, and then padding
or truncating the sequence to a specific length.7 Next, these
sequences are fed to an input layer which is connected to
a pre-trained model. After all parameters flow through the
model, we replace the last layer of the model with a double-
label classification layer to predict (dis)belief. Finally, we
compare the predictions and labels, calculate the cross en-
tropy loss, and back-propagate errors. This training process is
done iteratively for a certain number of epochs, as determined
by cross validation on the training set.

As reported in the original papers, these models achieve
state-of-the-art performance on a wide range of generic NLP
tasks. Thus, we expect that they can increase performance
for our task (versus the linear models) without designing
domain-specific neural architectures.

Experimental setup. We randomly split the dataset into
80% (5,448) training set and 20% (1,361) testing set. Our
linear models were trained until convergence, which com-
pleted within one minute. We set up the neural models (BERT,
XLNet, and RoBERTa) using the same neural architecture,
hyperparameters, vocabularies, and tokenizers as the base
models described in the original papers,8 and we trained
them for three epochs, which completed within two hours on
a single Titan X Pascal GPU.

Evaluation metrics. All of the models we experiment
with are probabilistic classifiers that assign a probability P to
the positive label (i.e., disbelief or belief) and the remaining

7Although longer sequences are truncated to a maximum se-
quence length, information loss is expected to be rare, considering
that commonsense writing styles usually put important (and thus
identifiable) content in the beginning of comments (Jiang et al.
2020).

8Due to equipment constraints, we are unable to run large models
released from these papers.
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Figure 5: Precision-recall (for predicting positive labels)
curves of six trained classifiers evaluated on the testing
set. Three neural transfer-learning based classifiers (BERT,
XLNet, and RoBERTa) have similar performance, and out-
perform two linear classifiers with lexicon-derived features
(LIWC+LR and ComLex+LR), which outperform trivial
baselines. Isolines for binary-F1 scores are shown.

1 − P to the negative label (i.e., not disbelief or not belief).
We then obtain the predicted label by setting a threshold
τ ∈ [0, 1] to cut off the probability distribution so that inputs
with P > τ are assigned with positive labels and inputs with
P < τ are assigned with negative labels.

Before discussing our thresholding strategy (i.e., the choice
of τ ), we evaluate each classifier on the testing set using
precision-recall curves that we obtained by varying τ between
0 and 1. After we choose the threshold τ , we evaluate each
classifier on the testing set using unbiasedness (defined later
in § 4.3), binary-, macro-, and micro-F1 scores under τ .9

Results. The precision-recall curves of all classifiers are
shown in Figure 5. Linear classifiers with lexicon-derived
features (LIWC+LR and ComLex+LR) outperform trivial
baseline methods and achieve their best binary-F1 scores near
0.6 for disbelief (Figure 5a) and 0.5 for belief (Figure 5b).
Neural transfer-learning based classifiers (BERT, XLNet and
RoBERTa) have the best performance, achieving their best
binary-F1 scores around 0.8 for disbelief (Figure 5a) and 0.7
for belief (Figure 5b). The performances of the three neural
classifiers are similar, with RoBERTa being slightly better
than BERT and XLNet, aligning with the results in (Liu et al.
2019) for generic NLP tasks.

4.3 Thresholding Strategy
In the real world, the thresholding strategy is linked to spe-
cific downstream tasks: some common strategies include
applying the default τ = 0.5, choosing τ that maximizes

9For binary labels, micro-F1 is equivalent to accuracy.



Table 1: Evaluation results for classification. The chosen thresholds τ , unbiasedness, binary-, macro-, and micro-F1 scores
under τ for all experimented classifiers on the testing set are shown. Chance and linear classifiers can achieve unbiasedness
for both disbelief and belief labels but exhibit poor performance. All three neural classifiers can achieve unbiasedness for the
disbelief label but only RoBERTa can achieve unbiasedness for the belief label. RoBERTa also has the best F1 scores.

Classifier Disbelief Belief
Threshold τ Unbias? Binary-F1 Macro-F1 Micro-F1 Threshold τ Unbias? Binary-F1 Macro-F1 Micro-F1

Chance 0.654 3 0.354 0.494 0.533 0.814 3 0.170 0.490 0.691

LIWC+LR 0.415 3 0.548 0.647 0.675 0.306 3 0.450 0.666 0.806
ComLex+LR 0.364 3 0.586 0.683 0.712 0.279 3 0.371 0.612 0.761

BERT 0.374 3 0.801 0.840 0.850 0.646 7 0.620 0.773 0.877
XLNet 0.514 3 0.798 0.839 0.850 0.593 7 0.646 0.785 0.877
RoBERTa 0.436 3 0.817 0.855 0.864 0.451 3 0.671 0.800 0.884

F1/accuracy scores, choosing τ under certain precision/recall
guarantees, etc.

In our case, however, the application is to use the learned
classifier as a proxy for human experts, to measure (dis)belief
at scale. Therefore the classifier is expected to make statisti-
cally unbiased estimations comparing to the underlying label
distribution. This means that a desirable τ should equalize
error rates between false positives and negatives, so that er-
rors can be balanced out when the classifier is applied onto a
large dataset.

Specifically, consider the following confusion matrix:

Human experts
Positive Negative

Predictions Positive TP FP TP+FP
Negative FN TN FN+TN

TP+FN FP+TN N

Consider a tweet expressing (dis)belief as label b, then the
underlying prevalence E(b) in the sample is the number of
positive labels (TP+FN) divided by the sample size (N ). Us-
ing a trained classifier to predict b, the estimated prevalence
E(b̂) is then the number of predicted positive labels (TP+FP)
divided by the sample size (N ). An unbiased classifier should
make E(b) = E(b̂), i.e.,

E(b) =
TP(τ) + FN(τ)

N
=

TP(τ) + FP(τ)
N

= E(b̂), (1)

and therefore,
FP(τ) = FN(τ). (2)

To verify unbiasedness, we choose a threshold τ using
Equation 2 for every classifier from the training set, and then
apply the same threshold τ on the testing set and conduct
hypothesis tests on Equation 2 again. If Equation 2, as the
null hypothesis, is not rejected, the classifier under threshold
τ is unbiased. We use the χ2 test and set the significance
level as p < 0.01 after Bonferroni correction.

The final evaluation results for all experimented classifiers
are shown in Table 1. Chance and linear classifiers, with
their simple structure, can easily achieve unbiasedness for
both disbelief and belief labels. However, this unbiasedness
is moot given their poor performance, as we hypothesize that
prevalence will shift in the measurement dataset, i.e., if we

apply the Chance classifier under the chosen threshold for
measurement, the resulting distribution would be the same
as our training data, whose distribution is not representative
(as discussed in § 3.1). For the neural classifiers, all three
can achieve unbiasedness for the disbelief label but only
RoBERTa can achieve unbiasedness for the belief label. In
addition, RoBERTa has the best performance evaluated by
F1 scores, therefore we choose it as the classifier to measure
(dis)belief at scale.

5 Measurement
As an application of our classifier, we leverage it to measure
(dis)belief at scale and explore our proposed research ques-
tions. Our measurement study leverages an existing dataset
collected by (Jiang and Wilson 2018) that contains 1,672,687
comments collected from Facebook, 113,687 from Twitter,
and 828,000 from YouTube written in response to 5,303
fact-checked claims. These claims are drawn from the en-
tire archive of Snopes and PolitiFact’s articles between their
founding and January 9, 2018.

The applicability of our trained classifier on this dataset
is suggested by (a) the same data collection method, i.e.,
gathering all comments on social media made in response
to seed claims identified from fact check articles; and (b)
the consistent style of informal English language in social
media comments.10 We preprocess the dataset the same way
as our experiments, and then feed the dataset to the RoBERTa-
based classifier using our chosen τ as the threshold to predict
(dis)belief labels on each comment. This process runs within
six hours on a single Titan X Pascal GPU.

5.1 Prevalence of (Dis)belief
(RQ1) asks for an estimation of the prevalence of (dis)belief.

This prevalence intuitively varies by the types of
(mis)information, therefore we aggregate the veracity of the
original claims into three (mis)information types: (a) true, if
the claims are rated as “true” by Snopes or PolitiFact — these
claims contain no misinformation, and their responses were
shown to follow distinctive patterns versus others (Jiang and

10This, however, does not suggest that the measurement dataset
and the training dataset have identical distributions. We are actively
working to annotate the measurement dataset for future release.



0% 5% 10% 15%
Disbelief %

False

Mixed

True
(M

is
)i

nf
o.

 t
yp

e

 15%

 14%

 12%

(a) For disbelief, as the verac-
ity of the claims decreases, the
prevalence of expressed disbe-
lief increases.

0% 5% 10% 15% 20% 25%
Belief %

False

Mixed

True

(M
is

)i
nf

o.
 t

yp
e

 20%

 21%

 26%

(b) For belief, as the veracity of
the claims decreases, the preva-
lence of expressed belief also
decreases.

Figure 6: Prevalence of (dis)belief. For true/mixed/false
claims on social media, 12%/14%/15% of comments express
disbelief and 26%/21%/20% of comments express belief.

Wilson 2018); (b) mixed, if the claims are rated as “mostly
true”, “half true”, or “mixed” — these claims contain some
misinformation but also some truth; and (c) false, if the claims
are rated as “mostly false”, “false”, or “pants on fire!” —
these claims contain mostly falsehood.

Next, we aim to estimate the prevalence of (dis)belief
in comments in the dataset. However, some of these com-
ments are impacted by a powerful confounding variable: the
existence of a fact-check article. To mitigate this, we filter
out comments that were posted after the corresponding fact-
check article was published. Note that, even with this filtering,
the remaining comments could still be biased in the claimants
distribution (as we discuss in § 6.1).

Finally, we group the remaining comments by the
(mis)information type, average their (dis)belief labels (1 if
estimated to express (dis)belief and 0 otherwise), and show
the results in Figure 6.

We observe that as veracity of claims decrease, disbelief
increases while belief decreases. As shown in Figure 6a, we
estimate that 12%, 14%, and 15% of comments express disbe-
lief in response to true, mixed, and false claims, respectively;
Figure 6b shows that 26%, 21%, and 20% of comments
express belief in response to true, mixed, and false claims, re-
spectively. These findings suggests that at least some people
commenting on misinformation have the ability to distinguish
falsehood, which resonates with the results from existing stud-
ies on belief in misinformation (Anderson and Rainie 2017;
Mitchell et al. 2014; Nielsen and Graves 2017).

However, the difference in the prevalence of (dis)belief
across (mis)information types is relatively small, and for
claims that were verified to be true, we estimate that only
26% of comments express belief while 12% express disbe-
lief. One potential explanation for this observation is that
the partisan environment drives the public to suspect any
claims raised from the opposite ideological group regardless
of veracity (Hochschild and Einstein 2015; Guess, Nyhan,
and Reifler 2018; Grinberg et al. 2019). Another, though less
likely, explanation is that media literacy education equips
the public with curiosity to query and doubt all claims, even
when the claim is consistent with existing facts (Potter 2018;
Hobbs and Jensen 2009). Both explanations are worthy of
deeper investigation by future work.

Table 2: Regression results for the effects of time and fact-
checks. OLS is used to estimate parameters for constant
effect (β̂0), time effect (β̂1), and effect of fact-check (β̂2)
on 1,395,293 comments in response to false information.
There is an extremely slight time effect of falsehood aware-
ness, where disbelief increases 0.001% and belief decreases
0.002% per day after the initial claim. Controlling the time
effect, disbelief increases 5% and belief decreases 3.4% after
a fact-check.

Parameters Disbelief Belief
Estimation p-value Estimation p-value

β̂0 +1.52× 10−1 ∗∗∗ +1.98× 10−1 ∗∗∗

β̂1 +9.96× 10−6 ∗∗∗ −2.19× 10−5 ∗∗∗

β̂2 +5.00× 10−2 ∗∗∗ −3.41× 10−2 ∗∗∗

# of samples 1, 395, 293 1, 395, 293

5.2 Effects of Time and Fact-Checks
(RQ2) and (RQ3) ask for the effects of time and fact-checks.
These two questions confound together along the temporal
dimension, therefore we investigate them simultaneously. We
focus on their effects on false claims, which restricts our
analysis to 1,395,293 comments.

To investigate (RQ2) and (RQ3), we formulate the follow-
ing model: we denote a comment as m, its corresponding
claim as Cm, its corresponding fact-check for the claim as
Fm, and ∆e1,e2 as the time difference (unit: days) between
event e1 and event e2 (∆e1,e2 > 0 if e2 happens after e1).
Then, ∆Cm,m represents the time delay between a comment
and its claim, and ∆Fm,m represents the time delay between
a comment and the fact-check of its claim.

Under these notations, the following model captures the
linear effects of time and fact-checks:

b̂ = β0 + β1 ·∆Cm,m︸ ︷︷ ︸
(RQ2)

+β2 · I+(∆Fm,m)︸ ︷︷ ︸
(RQ3)

+ε, (3)

where b̂ is the underlying prevalence of (dis)belief estimated
by the classifier (defined in § 4.3), I+ is the identity function
of positive numbers that returns 1 if the input is positive and
0 otherwise, ε ∼ N(0, σ2) is normally distributed noise cen-
tered at 0, and β0, β1, β2 are the parameters to be estimated.

This model is similar to the traditional difference-in-
difference model from causal estimation methods, where
the (broadly defined) time variable ∆ and the intervention
variable I are regressed jointly to estimate their respected
effects (Lechner and others 2011). In our setting, ∆ is de-
fined as the time difference between a comment m and its
corresponding claim Cm, and I is a binary variable identi-
fied by the time difference between a comment m and its
corresponding fact-check Fm.

We use Ordinary Least Square (OLS) to estimate Equa-
tion 3 for β̂0, β̂1, β̂2. Here, β̂0 represents the constant effects
of the underlying initial (dis)belief; β̂1 represents the time
effect (RQ2), i.e., for every unit of ∆cm,m, (dis)belief is
changed by β̂1; β̂2 represents the effect of fact-checks (RQ3),
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Figure 7: Platforms difference of expressed (dis)belief. The
measured prevalence varies across social media platforms.

i.e., after fact-checks (the threshold of I+, ∆Fm,m > 0),
(dis)belief is changed by β̂2.

As shown in Table 2, there is an extremely slight time
effect, where disbelief increases 0.001% and belief decreases
0.002% per day after the initial false claims. This effect
may be caused by social dynamics, where past comments
embed the “wisdom of the crowd” at identifying misinfor-
mation, which then impacts future users who engage with
the claims (Tschiatschek et al. 2018; Kim et al. 2018). Con-
trolling for the time effect, disbelief increases 5% and belief
decreases 3.4% after the publication of a fact-check arti-
cle, which reinforces existing work on the positive effects
of fact-checks (Tambuscio et al. 2015; Hannak et al. 2014;
Garrett, Nisbet, and Lynch 2013). Note that although the
prevalence of (dis)belief is altered by fact-checks, the mecha-
nism behind such positive effects is still unknown: does the
fact-check correct the existing false belief of the same group
of users, or does the publication of the fact-check attract a dif-
ferent group of users to comment on the claim with disbelief
(therefore altering the overall prevalence)?

5.3 Difference Across Platforms
(RQ4) asks for difference in (dis)belief across social media
platforms. We process the dataset the same way as § 5.1,
except that here we group data by social media platforms
instead of misinformation types.

As shown in Figure 7, the prevalence of (dis)belief varies
across social media platforms. Figure 7a shows that for disbe-
lief, Facebook comments express less disbelief than YouTube,
while the difference is not significant for Twitter. Figure 7b
shows that for belief, Facebook comments express more be-
lief than YouTube, whose comments express more belief than
Twitter.

Note that this aggregation ignores other confounders, e.g.,
claim and audience distributions, therefore the result only
suggest an overall difference in (dis)belief prevalence across
platforms. This reinforces our position (articulated in § 3.1)
that analyzing Twitter alone is insufficient to represent the
misinformation ecosystem.

6 Discussion
Our study has several limitations that we discuss in this sec-
tion, together with potential directions for future work.

6.1 Limitations

The dataset we use in our measurement study contains
2,614,374 social media comments, written in response to
the entire archive of 5,303 fact-checked claims by Snopes
and PolitiFact, a large dataset that is arguably representative
to measure the prevalence of (dis)belief. However, the dataset
could still be biased in certain respects.

Claimant bias. First, fact-checked claims are, in gen-
eral, made by high-profile claimants (e.g., political pundits or
well-known organizations), therefore excluding claims from
the common crowd. There is, to our knowledge, no existing
work discussing the relative importance of claims erroneously
made (or misinterpreted) by the common crowd in the misin-
formation ecosystem, therefore we are unable to estimate to
what extend this exclusion affects our measurement.

Topical bias. Second, most of the articles from Snopes
and PolitiFact are focused on politics or political issues, there-
fore our measurement is also heavily focused on these topics.
Other popular misinformation topics, such as health (Berin-
sky 2017) or scientific (Farrell, McConnell, and Brulle 2019)
misinformation, could be less polarized and thus alter the
underlying distributions of (dis)belief.

Proxy validity. The use of comments to understand so-
cial interaction is common in social media studies. How-
ever, a comment may not reflect the true underlying be-
lief of a person. The Hawthorne effect (McCarney et al.
2007) would suggest that social media users are aware of
being observed by the public and thus change their behav-
iors. Social identity (Stets and Burke 2000) and normative
influence theory (Kincaid 2004) would suggest that a com-
ment could be posted just to cater to the preference of a
person’s ideological group, instead of capturing their true
belief. Additionally, the (dis)belief of people who retweet
the claim without commenting are not captured in our ap-
proach. Therefore, we emphasize that our study measures
expressed (dis)belief in the misinformation ecosystem, and
our results should be interpreted together with existing quali-
tative and experimental studies (Anderson and Rainie 2017;
Nielsen and Graves 2017).

Bots and likewise. Although comments from bot and bot-
like (e.g., the Internet Research Agency (IRA)) users are not
cleaned in the dataset, recent studies show that bots mostly
spread repeated information rather than commenting (Shao et
al. 2017), and the IRA had very limited commenting activity
comparing to the entire Twitter population (Im et al. 2019;
Zannettou et al. 2019). We compared our training dataset
verses an IRA account dataset released by Twitter and found
no overlap (Gadde and Roth 2018). Therefore, the existence
of bots should have minimal effects on our results. Note
that the limited commenting activity of IRA does not imply
limited impact, as a comment can influence subsequent com-
ments. That said, comments under such influence, as long as
they are from real users, are intended to be captured in our
measurement.



6.2 Future Work
Our work presents initial results for observational studies of
expressed (dis)belief in (mis)information, and future work
can extend both the modeling and measurement aspects of
our work.

Modeling The state-of-the-art pre-trained models for clas-
sification in our experiments have been shown to outper-
form specifically-designed neural architectures for a wide-
range of NLP tasks (Devlin et al. 2019; Yang et al. 2019;
Liu et al. 2019), and achieved reasonable performance for
our task as evaluated in § 4.2. However, there is still poten-
tial modeling space to improve classification performance,
and we hope the release of our annotated dataset can benefit
future researchers for this task.

Measurement Our measurement is first focused on esti-
mating a coarse average of (dis)belief prevalence, and then
on potential effects of time, fact-checks, and platforms. Fu-
ture work can apply our released classifier to study more
fine-grained research questions, as long as more features are
observed in future dataset. In addition to the followup ques-
tions we raised in § 5, there are other potential directions
along this line, e.g., a recent study showed that conservatives
and senior citizens are more vulnerable to spread misinforma-
tion (Guess, Nagler, and Tucker 2019), but are they also more
vulnerable to believe it, and if so, to what extend? Are there
geographic or longitudinal differences in the distribution of
(dis)belief?

6.3 Conclusion
In this paper, we proposed and developed an observa-
tional approach to understand expressed (dis)belief in
(mis)information by leveraging comments as a proxy. We
applied our trained classifier to explore the research ques-
tions of the prevalence of (dis)belief, the effects of time and
fact-checks, and differences across social media platforms.

Our measurement delivered some optimistic results, e.g.,
increased disbelief and decreased belief as information ve-
racity decrease, (albeit slightly) increased disbelief and de-
creased belief for false claims over time, a positive effect
of fact-checks. However, these results do not undermine the
fundamentally concerning consequences of misinformation,
especially since we also found some pessimistic results, e.g.,
considerable suspicion of truthful claims.

Despite several notable limitations, we hope this work
will be a helpful addition to the literature that complements
existing qualitative and experimental studies of (dis)belief
and (mis)information.
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