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Problem definition: Ride-sharing platforms employ zone-specific surge pricing to match capacity with

demand. Since the prices are spatially dispersed, labor capacity spills over (i.e., drivers move around) across

zones. We explore the questions: Under what conditions are ride-sharing pricing policies effective in the

presence of spillovers? And, what are the implications of such pricing policies for managing congestion and

the welfare of both consumer and labor?

Academic/Practical Relevance: There is a debate in the academic community about the values of

elasticity that drive the efficacy of pricing policies for shared capacity. This debate has yet to consider price

and capacity spillovers. We assess the effectiveness of alternative pricing policies to provide guidance in

regards to the debate on their efficacy for managing congestion, while assessing consumer and labor surplus

for a relevant range of elasticity values.

Methodology: We develop a stylized optimization model to characterize the relationship between price

and capacity spillover. We then investigate how a platform accounts for spillovers by estimating a spatial

panel model on a dataset from Uber’s operations. Alternative pricing policies are assessed through counter-

factual simulations.

Results: Our results show that Uber balances price smoothing and capacity spillover effects. Allied

counterfactual analysis illustrates the limitations of spot pricing mechanism (i.e., a policy that does not

account for spillovers) commonly being used in the extant literature. These results also show that welfare

can be improved by spillover-based pricing and capacity decisions.

Managerial Implications: Digital operations based on shared capacity often require yield management

choices for manipulating both supply and demand. Our results show that such operations should account for

the simultaneous increase in capacity and drop in demand through surge pricing. We also provide guidance

in terms of key parameters that are relevant to the algorithmic implantation of surge pricing policies on

shared capacity platforms.

Key words : Digital Operations; Platform Driven Operations; Sharing Economy; Spillover Effects; Yield

Management
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1. Introduction

The sharing economy has altered the way that firms, service providers, and consumers

manage their time, money, and resources in a variety of industries ranging from trans-

portation to hospitality (Sundararajan 2016). The use of digital platforms in these

settings enables an on-demand service experience for consumers and expedient feedback

to service providers. Emergent literature has modeled both the operational aspects that

drive stakeholder (firm, provider, and consumer) decisions and the economic ramifications

of such decisions (e.g., Cohen et al. 2016, Taylor 2018, Bai et al. 2018). Ride-sharing

has received particular attention in this realm (Gurvich et al. 2016, Cachon et al. 2017).

Ride-sharing platforms such as Uber, Lyft, Juno, Curb, Gett, Didi Chuxing, and Fasten

connect individuals seeking a ride with providers (drivers) who provide a service for

a predetermined wage payment. In this setting, drivers are sensitive not only to their

wage rates but also to the variation in rider demand. In a given period of time, the

platform influences the ultimate demand and available drivers it receives by setting prices.

And, since drivers are allowed to dictate their own schedule, the platform’s capacity is

characterized by the mismatch that must account for variability both in demand and

supply. To deal with this mismatch, platforms often incorporate dynamic pricing policies

such as surge pricing to increase capacity and decrease demand in a congested area. Prior

research on ride-sharing has advanced our understanding of surge pricing as a mechanism

to help firms that operate platforms balance capacity and demand. Much of this revenue

management literature is analytic. Specific analytic assumptions have lead to results that

feature competing findings. According to Benjaafar et al. (2018, p.6):

“In settings where workers have discretion over how much they work, there has been

some debate regarding the elasticity of labor supply. For example, in a study of New

Yorker City taxi drivers, Camerer et al. (1997) find evidence of negative elasticity and

argue that this may be due to taxi drivers being income targeters (i.e., drivers tend

to stop working once they reach an income target). In contrast, Chen and Sheldon

(2015) and Sheldon (2016), using data from the ride-sharing service Uber, find that

drivers tend to drive more when earnings are higher (e.g., during price surges).”
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The debate about elasticity of labor supply has relied heavily on spot pricing. There

is a gap in the underlying literature, in terms of accounting for labor capacity spillovers

and price spillovers that transpire from one ride-sharing service zone to another. Capacity

spillover refers to the movement of drivers from one zone to another zone, either to fill

an existing demand (e.g., to pick up or drop off existing passengers) or in anticipation of

future demand (e.g., to seek riders in surging zones). Price spillover refers to the smoothing

or balancing of prices from a focal zone to its neighboring zone. Spot pricing, in contrast,

refers to the surging of prices solely in a focal zone. Most of the analytic work, for reasons

of tractability, uses spot pricing and ignores capacity spillovers. We help fill this gap in

the empirical revenue management literature by incorporating capacity spillovers and price

smoothing effects into our model via a spatial econometric specification. In contrast to

some research in this domain, we treat demand as endogenous to price changes, and we

model capacity as a dynamic construct while we investigate a ride-sharing platforms pricing

strategy. Our study addresses two questions: Under what conditions of price elasticity does

a ride-sharing platform set a particular level of surge pricing to deal with spatial spillovers

so as to provide reliable services (i.e., to reduce congestion expressed by customer waiting

time)? And, how effective are such spillover-based pricing policies in managing congestion

and the welfare of both the consumer and ride-sharing drivers (labor) in the presence of

spillovers?

We start with a stylized capacity management model and find an equilibrium price that

is driven by the current state of both capacity and demand. We then specify a spatial

econometric model that accounts for both the spatial and temporal effects on price. Using

this model, we estimate the pricing decision in the focal zone in terms of various forms of

capacity and pricing in the focal zone and its adjacent zones. We then use the estimated

parameters to conduct a counterfactual analysis in order to provide guidance in regards to

the debate, and to manage congestion, while assessing consumer and driver (labor) welfare.

Our paper contributes to the emergent literature on platform driven revenue manage-

ment in three unique ways: (i) We contribute to the literature on autonomous capacity

management, under two-sided network effects, by showing that depending upon conditions

of price elasticity, a ride-sharing platform can improve upon analytic (e.g., spot pricing)

results in the operations and information systems literature in terms of managing con-

gestion and welfare of shared capacity systems; (ii) We find that both capacity spillover
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and price smoothing across zones have a significant association with surge pricing in the

focal zone; this finding advances empirical literature on revenue management that treats

dynamic pricing and congestion management as means to pool, whereas we also consider

the case of congestion due to pooling; (iii) We find that Uber’s algorithms update surge

prices much more rapidly than the speed of sampling of these data by the Uber drivers and

consumers; given this observation and our policy analysis results, we argue that the plat-

form’s rapid pricing updating enables Uber to achieve high performance, akin to aggressive

pricing, when compared with the spot pricing policies.

2. Literature Review

We draw upon two related literature streams: the empirical studies of revenue management

practices and the analytic treatment of allied welfare economics.

Our paper relates to the stream of empirical literature on revenue management that

combines capacity management with pricing strategies. We organize this literature into

the dimensions of either static versus dynamic (i.e., endogenous) capacity and static versus

dynamic (endogenous) demand.

Table 1 Empirical Studies on Demand and Capacity Management

Static Demand
(exogenous to price change)

Dynamic Demand
(endogenous to price change)

Static (exogenous) Capacity
Olivares and Cachon (2009)
Li et al. (2016)
Cui and Hu (2018)

Lu et al. (2013)
Li et al. (2014)
Tereyağoğlu et al. (2018)

Dynamic (endogenous) Capacity
Moreno and Terwiesch (2015)
Karacaoglu et al. (2017)

Our paper

The literature on static demand and capacity is abundant. A benchmark paper, Olivares

and Cachon (2009), draws upon a data set from the automotive industry to estimate the

effect of the number and type of local competitors on inventory holdings. Their results

suggest that the service-level effect is strong, nonlinear, and positive in that automobile

dealers carry more inventory (controlling for sales) when they face additional competition.

More recent work in this static-static stream focuses on pricing mechanisms in on-demand

service platforms to help balance capacity and demand. Li et al. (2016) use the context of

on-demand service platforms to estimate the effect of behavioral anomalies between ama-

teur and professional service providers on market outcomes. They empirically show that

professional providers experience higher occupancy rates and revenues using data from
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Airbnb. They also propose a parsimonious model that suggests an incentive for Airbnb’s

service platform to charge different prices to amateur and professional service providers.

In a similar setting using a dataset from Airbnb, Cui and Hu (2018) consider distributed

pricing instead of centralized pricing while studying service provider behavior. Their work

focuses on mutual benefits of social utility for providers and customers. Given the setup,

capacity and price spillovers are not relevant to their work. Moreno and Terwiesch (2015)

consider dynamic (endogenous) capacity in a two-sided market setting by matching tasks

with service providers. They empirically examine independent contractors’ bidding behav-

ior on freelance contractor platforms, allowing for flexibility in production and dynamic

pricing over time. Karacaoglu et al. (2017) use data from a large e-hailing company in

South America to study reactions of drivers to entry of new competitors in their zone. Just

like our paper, they also find that agents are likely to scatter owing to increased capacity.

However, they do not examine pricing effects explicitly.

Li et al. (2014) relax the assumption of exogenous demand and instead model demand

as endogenous to price. They use airfare and booking data from the air-travel industry to

conduct a structural estimation of the proportion of strategic consumers in the popula-

tion. They identify conditions under which most strategic consumers are found and when

such consumers’ presence may boost revenues. Lu et al. (2013) develop an econometric

framework in a retail context that uses queuing activity along with point-of-sales (POS)

information to estimate the impact of queues on consumer behavior, showing that a pooled

system can lead to fewer customers joining the system and therefore increase lost sales

when customers decide to join a queue based on its queue length. As in Li et al. (2014),

they also set demand as endogenous to price and find an indirect cross-elasticity effect, in

that lowering the price of one product can increase congestion, which can indirectly affect

demand for another product. This effect is magnified by the heterogeneity and the negative

relationship between customer waiting and price sensitivity of the customer. Tereyağoğlu

et al. (2018) adopt a dynamic pricing model in a concert ticket sales setting to examine

consumer purchasing behavior that is dependent on price and capacity sold. They empiri-

cally show that the effect of referencing to past experiences is strong and that consumers

are loss averse across price and number of seats sold as a fraction of capacity during their

past visits. These studies consider service capacity as fixed, whereas our model considers

both service capacity and demand as dynamic constructs.
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On the analytic side, recent literature in this stream has also examined congestion and

welfare implications for pricing and capacity decisions in on-demand service platforms. A

bulk of this literature focuses on spot pricing for reasons of tractability (i.e., it considers

price surges solely in a focal zone). Cachon et al. (2017) and Taylor (2018) consider agent

participation (i.e., the decision of whether to join the platform) under stochastic demand

and agent opportunity costs, and they treat price and wage as endogenous. Cachon et al.

(2017) presents an analytic model with dynamic prices and wages under self-scheduling

capacity (independent agents), while Taylor (2018) considers platforms that commit to

prices and wages in advance; they study the effect of agent independence and customer-

delay sensitivity on the optimal price and wage. As an exception to spot pricing work, some

studies have gone on to examine information spillovers from consumer learning about the

quality of a service from past experiences (Musalem et al. 2017) or they explore provider

capacity when one service zone spills over to another service zone to meet unfilled demand.

Bimpikis et al. (2016) identify possible spillovers by considering ride-sharing platforms

that price discriminate based on location to study the network effect of service demand

patterns on the platform’s pricing policy, profits, and consumer surplus under a stationary

environment. However, such models overlook welfare economics. Since the spot pricing

dominates a bulk of the literature on welfare economics, we use spot pricing as a benchmark

for comparisons in our counterfactual analysis discussed in section 5.

3. Surge Pricing with Spatial Spillovers
3.1. Surge Pricing Model

Drivers in a ride-sharing platform are allowed to autonomously decide whether to drive in a

particular zone, and this autonomy leads to variation in capacity levels over time. In order

to match demand with the variable capacity over time, the platform conducts a dynamic

pricing policy (or a dynamic wage policy) that considers both the current level of capacity

and expected demand. For example, a platform sets a higher price (and thus a higher

wage) when facing lower capacity levels during a high demand period to increase capacity

and decrease unmet demand. In the Uber platform, this price variation is set by a surge

multiplier, a multiplicative factor offsetting the standard trip fare that is based on distance

and time. Throughout this paper, price denotes the surge multiplier since we focus on the

dynamic portion of price response to capacity and demand in a zone regardless of trip
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Table 2 Variable Descriptions

Variable Description

si,t Average surge multiplier in zone i for period t
FCi,t Focal capacity - Number of drivers in zone i for period t
NCi,t Neighbor capacity - Number of drivers in the neighbors of zone i for period t
UCt Untapped capacity - Number of non-operating registered drivers for period t
di,t Aggregate demand - Number of ride requests in zone i for period t
bji Proportion of ride requests that transit from zone j to zone i
γl Aggregate price sensitivity of capacity type l (l ∈ {FC,NC,UC})
δl Static portion of capacity type l’s participation (l ∈ {FC,NC,UC})
Pl Capacity type l’s participation probability (l ∈ {FC,NC,UC})
α Aggregate price sensitivity of demand
θi,t Exogenous demand states (i.e., levels) in zone i for period t
α/θi,t Price elasticity
p Penalty costs for capacity shortage
h Holding costs for excess capacity

distance and time. We also assume the driver receives a commission that is proportional

to the price.

In addition, the platform deals with spatially distributed capacity since a driver moves

from one zone to another for various reasons. A driver’s participation decision may be

positively (Chen and Sheldon 2015) or negatively (Camerer et al. 1997) linked with price.

For example, an idle driver may choose to switch zones based on expectation of earnings in

a surging price zone, while an occupied driver may move to another zone while navigating

to the current rider’s destination. Therefore, capacity levels for the subsequent period

depend on capacity spillovers from idle drivers’ movements as well as drivers who relocate

to new zones due to rider destinations. In this section, we formulate how price encapsulates

such capacity spillovers. The degree of spatial price discrimination is determined by how a

single zone is defined. As an extreme, a single zone could possibly aggregate all the drivers

so that no actual spatial discrimination exists. However, Bimpikis et al. (2016) argues that

some degree of spatial discrimination is more beneficial than non-discriminated pricing.

In addition, Chen et al. (2015) found that Uber predetermines zones where each driver

receives an identical price. We assume that the entire ride-sharing service area is divided

into multiple zones and that a distinct price is periodically assigned to each zone.

Price in each zone is determined by the price-dependent demand di,t and capacity levels.

Demand di,t is characterized by two factors: a price-dependent factor and an exogenous

demand state. Throughout our study, we assume a linear demand to capture both factors.

Consistent with Uber’s demand estimation approach, we set up the aggregate demand in

zone i at time t to be:
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di,t =−αsi,t + θi,t + error (1)

Within this setup, two capacity effects are key factors in determining price: the direct

effect and spillover effect. First, the capacity in the focal zone i for the current time period

t, denoted by FCi,t, has first-order effects on the price. The factors di,t and FCi,t help

characterize the system’s operational performance (e.g., capacity shortage and utilization),

especially for ride demand from consumers sensitive to wait-time. Once current demand

is served by FCi,t, the remaining drivers in the focal zone decide whether to stay in the

zone based on their opportunity costs, which we assume to be randomly distributed. A

driver will stay only if expected earnings exceed the opportunity costs (Cachon et al. 2017).

Therefore, assuming the distribution is known with its cumulative density function OCFC ,

the probability of a driver staying in the same zone PFC is identical to OCFC(Expected

Earnings), which is a function of price under the commission-based wage scheme. Second,

capacity spillovers are also related to price in the focal zone. We characterize two types

of price-related capacity spillovers. One is from the spillover of drivers from neighboring

zones and the other is from untapped drivers − those not currently driving − who choose

to operate in the focal zone because of high expected earnings. Similar to drivers currently

in the focal zone, drivers in neighboring zones at time t, denoted by NCi,t and registered

drivers not currently in operation at time t, denoted by UCt, may choose to participate

in the focal zone with probabilities PNC and PUC , respectively. These probabilities differ

since each of the three capacity types has a distinct distribution of opportunity costs

which take earnings from any other alternatives into account. In short, these three forms

of capacity (i.e., FCi,t, NCi,t, UCt) determine the focal capacity in the subsequent period

with different probabilities that are directly proportional to the price. Thus, the focal zone

capacity is updated by the specified spillovers with price-dependent probabilities as well as

spillovers that arise due to customer destinations ending in zone i. Formally, the updated

focal capacity of zone i for time t+ 1 satisfies:

FCi,t+1 =
∑
j 6=i

bji ·min(dj,t, FCj,t) + bii ·min(di,t, FCi,t)

+max(FCi,t− di,t,0)PFC(si,t) +NCi,tPNC(si,t) +UCi,tPUC(si,t) (2)
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In Equation (2), the first term on the right indicates drivers entering the focal zone

from all other zones, the second term on the right indicates drivers who serve demand

within the focal zone, and the last three terms indicate drivers who choose to be in the

focal zone based on each price-dependent probability (PFC , PNC , PUC). A summary of

all variables is shown in Table 2. To characterize the relationship between price and each

of the three capacity types, we assume that the opportunity costs for each capacity type

are uniformly distributed with distinct ranges, so that the participation probabilities are

linearly proportional to the price with different rates. That is, for l ∈ {FC,NC,UC},

Pl = γlsi,t + δl (3)

Consumers in the platform are sensitive to waiting time when they have available alter-

natives. In response, a ride-sharing platform may set a price that minimizes its capacity

shortage since the shortage penalizes the platform through a loss of consumers. Moreover,

the platform also needs to consider the number of focal drivers in the subsequent period.

Having excess drivers in the following period may increase driver competition, which, in

turn, reduces drivers’ expected earnings. In sum, a high price decreases demand for the

current period but increases capacity for the subsequent period. To capture such an tem-

poral trade-off, we model a two-period capacity problem with an equilibrium price set to

minimize the penalty costs from capacity shortage and the holding costs associated with

the number of drivers in the subsequent period. Formally, we present the following stylized

objective function for the platform’s capacity management:

minimize
si,t>1

E[p ·max(0, di,t−FCi,t) +h ·FCi,t+1] (4)

With the demand given in Equation (1), the optimization problem characterizes an

equilibrium price of the platform as a function of each capacity type, when demand state

θi,t is greater than FCi,t. Formally, an equilibrium price is given by:

si,t =
p−hδFC
2hγFC

− 1

2α
FCi,t−

γNC
2αγFC

NCi,t−
γUC

2αγFC
UCt +

θi,t
2α

(5)

(see Appendix A for the proof)

As a result, in addition to the zone-specific characteristics such as demand state and

FC, other external effects such as spillovers from NC and UC are also reflected in the
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equilibrium price. The equilibrium price is thus based on the current state capacity and

demand as well as the price sensitivities of each capacity type (γFC , γNC , γUC) and demand

(−α).

3.2. Price Sensitivity of Capacity Spillovers

By drawing upon the price sensitivity parameters from the preceding analysis, we build

a set of empirically testable hypotheses on the relationship between the current spatial

distribution of capacity and price. Neoclassical theory assumes that individuals maximize

their own utility. Such an assumption implies that demand is negatively related to an

increase in price (i.e., α > 0). Negative price sensitivity of demand has been empirically

shown in the context of transport (see Oum et al. (1992)). Furthermore, Cohen et al.

(2016) find empirical evidence of the negative price elasticity of demand in the ride-sharing

context. Nevertheless, a tension remains in regards to the price sensitivity of labor supply.

On one hand, Camerer et al. (1997) finds a negative relationship between price and labor

hours of New York City taxi drivers, suggesting reference-dependent behavior of drivers.

In other words, they argue that drivers tend to stop driving once they reach their desired

daily profits. On the other hand, Chen et al. (2015) and Chen and Sheldon (2015) show

empirical support for a positive link between price change and driver participation in the

Uber platform. These findings are consistent with a common assumption that expected

earning must exceed the opportunity costs for a ride-share driver’s participation (see e.g.,

Bai et al. (2018), Benjaafar et al. (2018), Cachon et al. (2017), Gurvich et al. (2016),

Ibrahim (2018), Taylor (2018), etc.).

Since prior studies featuring price sensitivity and labor supply have addressed temporal

changes, we too look at temporal factors and also focus on the spatial distribution of drivers

in the ride-sharing service area. That is, we are interested in two decisions of a driver: when

to start and stop work and relocation during their work. The relationship between the price

and relocation decision is measured by γFC and γNC . Therefore, we claim that these two

sensitivities will have the same sign (i.e. γNC

γFC
> 0) as long as a driver exhibits consistent

behavior. Particularly, if a driver has already decided to work in the current period and

maximizes expected earnings for the relocation decision, this driver will move to a zone

with a higher price. This earning-maximizing behavior suggests that both γFC and γNC

are positive. On the other hand, γUC captures both the driver’s relocation and work hours

decision. If the earning-maximizing assumption applies for both decisions, we can conclude
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that γUC is positive. However, if a driver’s decision to work a certain number of hours is

independent of the current price, then γUC only measures their relocation decision and the

sign may not be positive. However, if a driver’s decision to work a certain number of hours

is negatively associated with price, the sign of γUC will be mixed. Farber (2015) finds that

a driver’s hours of operation decision is generally positively related to price although it is

heterogeneous across drivers. In line with their findings, we also assume that γFC and γUC

have the same sign (i.e., γUC

γFC
> 0).

The sign of the price sensitivity parameters characterizes the relationship between price

and capacity type. First, under a positive γFC assumption, the price in the focal zone will

increase to manage capacity utilization (the consumer-to-driver ratio) when focal capacity

is congested (i.e., the platform attempts to maintain the focal capacity by providing rela-

tively high expected earnings). Furthermore, if the price sensitivity of consumers (−α) is

negative, the equilibrium price will indicate that the platform may set a higher price for a

low current focal capacity to match demand with the given capacity by decreasing demand.

Second, the current neighbor capacity level is negatively correlated with price. In other

words, price will not increase if an adequate number of drivers are in neighboring zones

but too few drivers are in the focal zone. Likewise, price will increase when few drivers

are in neighbor zones even though the focal capacity was high enough to meet the current

demand. The equilibrium price also indicates a negative relationship between price in the

focal zone and NC under the assumptions that α> 0 and γNC

γFC
> 0. Finally, we characterize

an inverse relationship between the price and UC. When the number of drivers who are

expected to potentially participate in the following period is high, the price in the focal

zone will increase to reduce the possibility of driver shortage. The equilibrium price also

suggests the negative relationship under α > 0 and γNC

γFC
> 0. Therefore, we present a set

of hypotheses on the relationship between price and each of the three types of capacity as

follows:

Hypothesis 1. The price in each zone is negatively associated with the number of cur-

rent drivers in the same zone.

Hypothesis 2. The price in each zone is negatively associated with the number of cur-

rent drivers in its neighboring zones.

Hypothesis 3. The price in each zone is negatively associated with the number of cur-

rent untapped drivers.



Lee et al.: Surge Pricing on a Service Platform under Spatial Spillovers
12 BOSTON UNIVERSITY Questrom School of Business

3.3. Price Smoothing

So far, we have assumed that the surge multiplier for a certain zone is independent of pricing

characteristics in other zones. However, there may be a set of absolute spatial spillover

effects on the price across zones. That is, a price change in the focal zone may directly relate

to price changes neighboring zones. In the study of the real estate market, Can (1992) found

that housing prices are dependent on nearby prices solely based on their spatial proximity.

This suggests that there exists a spatial dependency that translates to neighboring prices.

In the ride-sharing context, a pricing policy in the focal zone may capitalize on the spatial

proximity of neighboring zones since it directly relates to consumer wait-time. In other

words, when a focal zone is highly likely to experience a capacity shortage, the platform may

increase prices not only in the focal zone but also in neighboring zones regardless of their

capacity and demand levels. In this scenario, a driver outside the focal zone travels into the

focal zone only when expected earnings exceed the opportunity costs, which account for

the spatial proximity to the focal zone. Thus, the probability of participating in the focal

zone decreases with distance from that zone. Therefore, when there is a capacity shortage,

the price may not only go up in the congested zone but also gradually rise in neighbor zones

around the congested zone, in order to secure drivers nearby. We define such a mechanism

as price smoothing. Price smoothing can reduce further shortages by attracting drivers into

locations in which their participation probabilities increase. In addition, price smoothing

can prevent high degrees of price discrimination across zones, which can cause inefficiencies

by allowing strategic behavior from drivers and riders. In turn, we hypothesize that the

surge price in a focal zone also increases prices in neighboring zones:

Hypothesis 4. The price in each zone is positively associated with the prices in its

neighboring zones.

Figure 1 offers a conceptual depiction of the hypothesized internal and external factors

that affect price.

4. Data and Methods
4.1. Data Collection and Measures

We collected data on UberX activity to test our hypotheses using the methods developed

by Chen et al. (2015) and also adopted by Jiang et al. (2018). UberX is the most popular

ride-sharing service in the United States. Although Uber provides various versions of ride-

sharing platforms such as UberBlack and UberPool, we focus on UberX since it provides
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Figure 1 Conceptual Framework

Note. wij is a weight of zone j based on spatial proximity between zone i and zone j

a simple one-to-one service and allows for the most autonomy for driver participation and

spatial relocation among all Uber-based platforms. We recorded the responses of Uber’s

server in the passenger app. When a consumer sends a signal for a ride request in the

passenger app, Uber’s server responds every five seconds with the GPS coordinates of the

eight nearest available drivers and the current surge multiplier (i.e., price). We developed a

script that sends signals to the Uber server from multiple observation points simultaneously

and records each of the responses. We collected the data in San Francisco from 00:00 A.M

on November 12, 2016 to 11:59 P.M on November 30, 2016. Aggregate descriptions of the

sample along with descriptive statistics are shown in Appendix B.

Our unit of analysis is the surge zone, in which a single price is given for each vehicle at

each point in time. Consistent with Jiang et al. (2018), we use the block group to denote a

surge zone. Although variation within the block group is possible, the block group is the

most granular unit that is amenable to analysis. Hence we aggregated the collected data

into capacity and price levels for block groups. In addition, based on the data shown in

Appendix B, we observe that the average travel time from one zone to another zone is

about 30 minutes. Therefore, we constructed a panel data set of the average price (si,t)

and number of unique drivers (FCi,t) for each zone (i) in each 30-minute interval (t) -

robustness checks are presented in the Online Appendix.

The other explanatory variables are operationalized from FCi,t with a few assumptions.

First, to measure UCt, we assume a large fixed value as the total number of registered

Uber drivers (M) in San Francisco. Thus, we have UCt = M −
∑

iFCi,t. Second, when

calculating NCi,t, we multiply FCi,t by a spatial weight matrix W . For N zones, the spatial

weight matrix is an N ×N nonnegative matrix of which elements (wij) indicate spatial
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proximity between any two zones (i and j). Its diagonal elements are zero and the matrix is

row-normalized. We adopt the radial distance method (Cliff and Ord 1981, Anselin 1988)

for our analysis: wij =

1, if 0<Distij ≤ 2

0, otherwise
, where Distij is the distance between i and j.

By assembling NCi,t with W , we were able to incorporate our assumption that opportunity

costs increase with distance from the focal zone. Furthermore, this enables us to use a

spatial Durbin model, as discussed in section 4.2.

4.2. Estimation Strategy

To begin, we consider a regression model specification with both spatial and temporal

effects of the following form:

yi,t = βxi,t +µi + t+ εi,t (6)

where each subscript i refers to the zone and t the time, yi,t represents an observation of

the dependent variable, β is a fixed parameter, xi,t is an observation of each explanatory

variable, µi represents the spatial fixed effect, t represents the vector for temporal effects

that control for the time trend, and εi,t an independently and identically distributed error

term with zero mean. The inclusion of µi and t should help capture omitted time-invariant

factors that characterize each zone and omitted temporal factors, respectively.

In addition to the spatial and time specific effects, our model further accounts for the

following interaction effects: (i) pricing decisions in a focal zone that may be influenced

by an explanatory variable in nearby zones, (ii) pricing decisions in other zones that may

influence pricing decisions in the focal zone, and (iii) pricing decisions in different zones

that may be spatially correlated due to unobserved characteristics. To account for such

possible interactions among different zones, we develop a spatial panel regression model

by extending Equation (6) as follows:

yi,t = λ
N∑
j=1

wijyj,t +βxi,t +β′
N∑
j=1

wijxi,t +µi + t+ υi,t (7)

where

υi,t = ρ
N∑
j=1

wijυj,t + εi,t (8)
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where υi,t represents a spatially autocorrelated model and ρ is the spatial autocorrelation

coefficient.

The inclusion of a spatially lagged dependent variable term (λ
∑N

j=1wijyj,t) and a spa-

tially lagged explanatory variable (β′
∑N

j=1wijxi,t) account for the spatial interaction effects

(i) and (ii), respectively, where λ is the spatial autoregressive coefficient and β′ is a fixed but

unknown parameter. The spatial econometrics literature refers to the model that includes

these two effects as the “spatial Durbin model” (SDM), see Anselin (1988) and LeSage

and Pace (2009). Moreover, specifying the error term as in equation (8) helps us incorpo-

rate the third spatial interaction effect (iii). The literature denotes it as a Manski model,

when all three effects are jointly included (Elhorst 2010). However, separately identifying

each effect is impossible (Bottasso et al. 2014). Instead, LeSage and Pace (2009) suggest

that ignoring the spatial error dependence only reduces efficiency in the estimates, which

can be mitigated with a large sample such as ours. Moreover, the authors indicate that

the SDM model does not ignore spatial dependence in the disturbances but nests models

involving both (i) and (iii). Therefore, LeSage and Pace (2009) argue that the SDM model

generates unbiased coefficient estimates even if the true process includes interaction effects

(iii). Bottasso et al. (2014) further discuss how unbiased estimates of the SDM model can

be obtained even with the possibility of error dependence.

Given these considerations, we use a spatial Durbin specification to estimate our model

as follows:

si,t = λ
N∑
j=1

wijsj,t +β1FCi,t +β2NCi,t +β3UCt +µi + t+ εi,t (9)

where s.,t represents the average surge multiplier in zone · for period t, NCi,t =∑N
j=1wijFCj,t, β1 represents the degree that price is dependent on focal capacity at a given

level of demand, and β2 and β3 reflect how much each capacity spillover is factored into the

price. λ indicates the extent to which price is affected by spatial proximity. We ran joint

Lagrange multiplier (LM) tests that were derived by Baltagi et al. (2003) (i.e., extended

LM tests of Breusch and Pagan (1980)) to test for the random effects and spatial error

dependence for our model specification. In addition to the main explanatory variables,

Chen and Sheldon (2015) found evidence of variation in demand by weather and weekend.

Hence, we included t to control for temporal effects such as Weathert, which is 1 if it is

rainy and zero otherwise, which controls for the natural variation in demand state due to
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adverse weather conditions. We also controlled for weekend (Weekendt), and time of day

(Hourt) effects, which determine the demand states θi,t for a given time period; Weekendt

is equal to one if the observation was made during the weekend and zero otherwise. This

controls for variations in demand state by day of the week; Hourt simply controls for time-

of-day effects. Moreover, demand states may also vary with zone. For example, downtown

San Francisco, a densely populated commercial area, has a different demand pattern from

that of the Sunset District, which is a residential area. We control for any such variations

across zones by including the time-invariant spatial effects µi. We ran a Hausman test

to check whether our model estimates are consistent with a random effects estimation,

guided by Mutl and Pfaffermayr (2011). The test statistics indicate that including random

effects is inconsistent, thus we consider the fixed effects for our main analysis. In particular,

we use the maximum likelihood spatial fixed effects estimator proposed by Lee and Yu

(2010), who suggest this as a bias correction procedure for previous maximum likelihood

estimators. By adding both temporal factors t and spatial fixed effects µi, our estimation

procedure controls the exogenous demand state (θi,t) that is presented in the equilibrium

price. For the estimation process, We follow the xsmle routine for STATA proposed by

Belotti et al. (2016).

4.3. Estimation Results

The first column of Table 3 summarizes the estimation results of Equation (9). We find

that the coefficient estimate (β1) for the Focal Capacity (FC) is not statistically significant.

Thus, Hypothesis 1 is not supported. In other words, the price does not appear to incor-

porate the number of drivers in the focal zone. This is possibly because the current FC is

not independently utilized by itself but integrated with the demand state as a signal to

surge. The price may surge when the demand state is expected to exceed the current FC.

However, the degree of the price surge may not be dependent on those two factors. More-

over, a driver currently transporting a consumer may pass through other zones quickly to

reach the destination. Thus, the pricing does not assume that drivers will stay idle within

the same zone in the subsequent time period. Instead, we observe that the median of

driver’s idle time is only about 3 minutes. The positive sign of β1 indicates that price may

increase with higher FC although it is not statistically significant. This could be explained

by driver’s forward-looking behavior. That is, a driver may decide where to go based on

future price rather than current price. Yılmaz et al. (2017) found that the positive effects
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of dynamic pricing diminishes with such strategic behavior. To enhance the effectiveness

of surge pricing, Uber can discourage driver’s strategic behavior. By increasing the price

slightly with an additional driver in the focal zone, the focal drivers are encouraged to stay

in the zone.

Table 3 Relationship between capacity levels and
surge multiplier

Surge Multiplier (si,t)
FCi,t 1.22× 10−5 -

(4.99× 10−5) -
FCi,t−1 - 3.23× 10−5

- (5.16× 10−5)
NCi,t −4.96× 10−4** -

(1.03× 10−4) -
NCi,t−1 - −4.52× 10−4**

- (1.08× 10−4)
UCt −1.89× 10−6* -

(7.31× 10−7) -
UCt−1 - −1.61× 10−6*

- (7.40× 10−7)∑N
j=1

wijsj,t 0.89** 0.89**

(0.013) (0.013)
Controls included included

Log-likelihood 75369.06 75295.48

Notes. Controls include Hourt, Weekendt, and
Weathert . Robust standard errors clustered by zone
are in parentheses. Number of observation is 156692
for the main model and 156520 for the lagged model.

+p < 0.1; ∗p < 0.05; ∗ ∗ p < 0.01.

Hypothesis 2 posits that the price in a focal zone will increase if not enough drivers

are close to the zone. We find support for Hypothesis 2 by observing that the number

of active drivers in neighboring zones has a significantly negative impact on price. The

negative relationship provides two important insights into Uber’s pricing policy. One is

that Uber assumes a positive price sensitivity for Neighboring Capacity (NC) spillovers.

The pricing policy expects neighboring-zone drivers will be stimulated to cross into the

focal zone that offers an increased price. The second insight is that Uber assumes that

unmet demand in the focal zone can be served by the spilled-over NC. That is, the pricing

policy proactively capitalizes on the anticipated NC spillovers. We also observe that the

magnitude of the NC’s impact is greater than that of the FC’s. This suggests that Uber

attempts to efficiently address demand in the focal zone by serving relatively less delay-

sensitive consumers at a lower price while giving up on serving consumers who are highly

sensitive to delay. In other words, as long as consumers are tolerable enough to be served

by NC, they can be served at a lower price. On the contrary, if they are highly sensitive to
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demand, Uber would choose to serve them with higher price. This aligns with the argument

of Taylor (2018) that consumers with high delay sensitivity have prompted the platform

to raise prices while giving up on serving price-sensitive consumers.

Furthermore, we find that the impact of Untapped Capacity (UC) on price is negative,

in line with Hypothesis 3. In other words, an increase in total number of registered Uber

drivers across all zones is associated with an increase in price. This illustrates that Uber

provides more incentives to currently operating drivers in any zone than to untapped

drivers. An untapped driver may not participate in the focal zone only because of its high

price. Thus, Uber may facilitate the matching of demand with supply by utilizing existing

drivers rather than by attracting untapped drivers. This finding contrasts with a common

argument that the untapped driver’s participation is motivated by the increased price.

Rather, this suggests that working hours of a driver tend to be set ex ante regardless of

price level as assumed in Bimpikis et al. (2016).

In our estimation, β2 and β3 estimate γNC

2αγFC
and γUC

2αγFC
respectively, and the ratios are

sensitive to the value of α. In other words, despite the statistical significance, the impact

of FC and UC on price can be small if consumers are highly sensitive to price. Nonetheless,

to further investigate the effects of FC and UC under specific pricing policies, we study

outcome performance with different values of α in Section 5.

We next examine the impact of spatially lagged variable
∑N

j=1wijsj,t to assess whether

Uber accounts for price smoothing. We find that the focal price is strongly dependent on the

prices in the neighboring zones, supporting Hypothesis 4. This indicates that, in addition

to exogenous factors such as capacity levels and demand state, price in the focal zone

is endogenously affected by itself due to its interrelationship with prices in the neighbor

zones. That is, spatial proximity is another significant factor that determines the spatial

distribution of prices. For example, even when a price in the focal zone needs to surge

based on exogenous factors while prices in neighboring zones do not, Uber increases prices

not only in the focal zone but also in neighbor zones. Uber executes price smoothing

for two possible reasons. First, it encourages drivers to move or stay near the shortage

zone by simultaneously increasing prices in a cluster of zones. By attracting drivers with

high prices, Uber can aggressively react to a capacity shortage. Second, by invoking price

smoothing, Uber prevents consumers in the focal zone from reneging or moving toward a

neighboring zone. In turn, price smoothing allows consumers to trade-off high price for a
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certain level of delay. In sum, we find that Uber manages the spatial dimension of capacity

with a pricing policy that capitalizes on two spatial spillovers: capacity spillovers and price

smoothing.

4.4. Robustness Checks

4.4.1. Time Agglomeration: As per our raw data set, Uber updates its states every 5

seconds. However, as shown in Appendix B, the average time that drivers require to learn

about the system status, based on their average travel time, is several minutes. We have

tested the model by aggregating the data set at 15 and 60 minute intervals as shown in

Online Appendix Section 1. These results are structurally similar to the base case shown

in Table 3.

4.4.2. Specification of Spatial Weight Matrix (W): We use the radial distance method

to specify the W matrix while smoothing prices in our base case (i.e, the result in Table

3). We also checked for the robustness of our results with different W s. Two other widely-

used methods were employed as suggested in Cliff and Ord (1981) and Anselin (1988): the

K-nearest and distance decay methods. In the K-nearest method, wij =

1, if j ∈N40(i)

0, otherwise
,

where N40(i) is a set of 40 nearest zones of zone i. In the distance decay method, wij =

1/Distij, where Distij refers to the distance between i and j. The base case results remain

robust as shown in Online Appendix Section 2.

4.4.3. Endogeneity: So far, we have assumed that price decisions for a given period

are made after the level of focal capacity is observed for that period. That is, the focal

capacity might be considered exogenous after controlling for spatial and temporal effects.

However, this assumption may not be warranted for a few reasons. For example, an increase

in focal capacity for a given period might have resulted from a price increase in the zone

for that period. Such simultaneity can bias the coefficient estimates. Although appropriate

instrument variables (IVs) would help us to address the issue, such methods with a spatial

panel dataset are not well developed in the spatial econometrics literature. Instead, we

address the issue in a similar fashion to Bottasso et al. (2014). First, we obtained estimates

using lagged explanatory variables (FCi,t−1, NCi,t−1, UCt−1) in order to account for the

difference in time. In this way, endogeneity bias from the current price that could trigger

changes in the current focal capacity is likely to be a minor issue. As shown in Table 3,
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column 2, our results are robust in that NC and UC have a negative impact on price

while the impact of FC is insignificant. Secondly, following by Bottasso et al. (2014), we

also implemented temporal lags of FCi,t and NCi,t as IVs using a generalized method of

moments (GMM) approach. In order for an IV to be valid, it must be correlated with

the explanatory variables, FCi,t and NCi,t in our case, and can influence the dependent

variable si,t only through the explanatory variables. Since driver movements can be costly

when the driver is idle, the total focal capacity might be correlated over time. Chen and

Sheldon (2015) found that the median driving time of Uber drivers was 3.47 hours, which

suggests that the number of drivers are correlated within the time interval. Furthermore,

the number of drivers is expected to have a certain degree of temporal autocorrelation

due to our data aggregation process. However, all lags are not exogenous due to the data

aggregation. Among those that satisfy the first condition, the furthest lag could have the

least direct impact on the price. Using our data, we find that FCi,t−8 and NCi,t−8 are not

significantly correlated with si,t but correlated with FCi,t and NCi,t. Therefore, we use

FCi,t−8 and NCi,t−8 as our IVs for the GMM approach. As shown in Online Appendix

Section 3, empirical results indicate that both price and capacity spillovers are important

factors in the pricing decision, suggesting that we have mitigated concerns of this type of

endogeneity.

4.4.4. Demand Sensitivity: The coefficients estimated in Table 3 imply relationships

among price sensitivities of consumer and labor as suggested in the equilibrium price. We

did not have data on demand state θi,t. Our regression results may be affected by variation

in θi,t. Therefore, we check robustness of the findings by examining the sensitivity of our

results to a range of demand levels. The results are presented in Online Appendix Section

4. These results show that the findings reported in Section 5 are robust to choice of level

of θi,t.

5. Counterfactual Analysis

To study the role of spatial surge pricing in addressing congestion and welfare in a ride-

sharing platform, we constructed three alternative pricing policies, each featuring estimated

parameters, and then we compared their respective performance. Recall that our price

elasticity measure is α/θi,t. Since both these parameters can vary independent of each other,

in our simulation, we either fix α (price sensitivity of demand) or θi,t (level of demand)

and vary the other parameter in a systematic manner.
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The first policy (Case 1 ) is a regular spot-surge pricing strategy that disregards both

capacity spillovers and price smoothing: si,t =
θi,t−FC

2α
+ 0.89; that is, price changes solely

based on the demand states (θi,t) and FCi,t. The other variables such as NCi,t, UCt, and W

do not affect the price decision. This spot pricing approach is consistent with the analytic

literature (Bai et al. 2018, Cachon et al. 2017, Gurvich et al. 2016). The second policy (Case

2 ) mimics Uber’s existing spatial surge pricing that accounts for both capacity spillovers

and price smoothing: si,t =
θi,t−FC

2α
+ 0.89

∑N
j=1wijsj,t − 0.000496NCi,t − 0.00000189UCt.

That is, by using the estimated coefficients (see Table 3), the focal price depends upon

NC , UC and the neighboring zone prices. The third policy (Case 3 ) we propose is a

surge pricing scheme that considers only price smoothing and ignores capacity spillovers:

si,t =
θi,t−FC

2α
+ 0.89

∑N
j=1wijsj,t. Since prices become less elastic to a capacity shortage

by considering the anticipated spillovers, Case 3 is the most aggressive pricing policy

for reacting to a capacity shortage. We propose Case 3 and compare it with the other

two cases since it may be a good candidate for a platform like Uber, aimed to provide

reliable services. By comparing these policies, we examine the effects of price smoothing

and capacity spillovers on both driver (labor) and consumer welfare.

As mentioned earlier, a ride-sharing platform’s pricing policy aims not only to maximize

profits but also to increase its market share. To increase its market share, the platform must

provide a sufficient number of drivers to quickly serve consumers and it must simultaneously

provide sufficient expected earnings for drivers. Consumers may be highly sensitive to delay

or price because their cost to switch to another option is relatively low. Therefore, among

other factors, utilization ratio (demand-to-supply ratio) and capacity shortage are critical

performance metrics for the platform. In addition to utilization and capacity shortage, we

also compare Uber’s consumer surplus and driver surplus under the three pricing policies.

As the platform utilizes autonomous drivers, the platform’s pricing policy will affect both

the consumer and the driver (labor). Furthermore, the surplus of one side will also affect

participants on both sides. For example, an additional rider who joins due to high surplus

may attract an additional driver by increasing expected earnings. This two-sided network

effect is required for the platform’s sustainable growth (Parker and Van Alstyne (2005)).

In addition, regulators are also interested in these performance metrics as this industry

is growing. In many cities, Uber is now required to limit the daily hours that drivers can
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work to protect their welfare. Therefore, it is also useful to document the surpluses for a

variety of pricing policies.

To compare these policies, we set up a virtual space that consists of 25 identical zones

(5×5). In each zone, demands occur randomly based on price, demand state (θi,t), and

exogenous consumer price sensitivity (α). Although the demand state θi,t should differ

across zone and time, we keep it constant (θi,t =100) for the sake of comparison with α

throughout our main analysis. Performance comparisons with different θi,t are shown in

Online Appendix Section 4. FCi,t is initially exogenous but can change based on the price

sensitivity of each capacity inferred from our estimation. We ran the simulation 100 times

with each pricing policy, and calculated the performance for each run in each of the 25

zones.

5.1. Capacity Shortage and Utilization

Figures 2 and 3 illustrate the operational performance of the three pricing policies where

the demand state is greater than current capacity. Overall, these plots clearly show the

trade-off between effectiveness (i.e., decreasing the average capacity shortage) and effi-

ciency (i.e., increasing the average capacity utilization). Such trade-offs are commonly seen

in the queuing literature (Ou and Wein 1992), but they have not been documented in

settings mediated by two-sided platforms. Due to these trade-offs, a platform’s pricing

decision depends on the weight assigned to effectiveness, instead of efficiency. For exam-

ple, a platform whose goal is to minimize capacity shortage performs better with Case 3

for consumers while Case 1 is best for a platform primarily concerned with utilization. In

addition, the pricing decision also depends on consumer’s price sensitivity. Price sensitiv-

ity, along with wait-time sensitivity form the consumer’s tolerance limit, which determines

whether consumer demand is fulfilled by existing drivers. As the price sensitivity increases,

the consumer tolerance limit decreases. The number of available drivers is the lowest in

Case 2 when the limit is extremely low (i.e., α> 92); our results are flipped when this limit

increases (i.e., α≤ 92).

We initially study the impact of price smoothing by comparing Case 1 (spot pricing)

and Case 3. We find that a platform increases its effectiveness (i.e., reducing shortage)

by conducting price smoothing. With spot pricing, the shortage increases with consumer’s

price sensitivity up to the point where no drivers are available. On the other hand, price

smoothing induces drivers to capture some of the highly price-sensitive consumer, and in
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turn the shortage decreases. This is because price smoothing effectively incentivizes drivers

to gather near the congested zone so that wait-time in the next period is reduced to within

the limits. In turn, more demand may be served. Secondly, we find that as consumers get

more sensitive to price, Case 3 efficiently maintains low shortage without employing more

drivers. As the price sensitivity increases, price smoothing motivates existing drivers to

move closer to the limits of consumers, and thus utilization increases. However, without

price smoothing, utilization remains nearly stationary but the shortage decreases as price

sensitivity increases, because consumers begin to leave due to lack of available drivers in

their tolerance limits.

Figure 2 Average Capacity Shortage (Less is Better)

Figure 3 Average Utilization (More is Better)

We next observe the impact of capacity spillovers in price by comparing Cases 2 and 3.

Overall, we find that capturing anticipated capacity spillovers not only increases utilization

(high efficiency) but also increases shortage (low effectiveness). Case 2 is effective only when

consumers are tolerant enough to be served by driver from another zone. However, when a

platform faces a wait-time sensitive consumer, the demand can be served only by drivers

within the tolerance limit, preventing drivers’ chasing behavior. While this increases the
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drivers’ probability of serving demand, the total number of matches may decrease due to

loss of demand from wait-time sensitive consumers. In addition, the gap between demand

and supply increases with the price sensitivity of consumers. Consumers could be strategic

and choose to wait for a low price as long as they can afford the wait. However, high

price sensitivity restricts this flexibility as price may not decrease to expected levels and

a consumer may be able to afford a longer wait. Such restricted flexibility makes it less

effective to utilize the expected capacity spillovers. Therefore, a platform that focuses only

on reducing shortage is worse off by incorporating anticipated capacity spillovers.

In summary, in terms of congestion, our results are conditioned upon the price elasticity

parameter. We show that (i) price smoothing increases the number of matches for most

consumers by allowing drivers to move toward the congested area, and (ii) capitalization of

anticipated capacity spillovers increases utilization by attempting to match demand with

near-limit drivers while increasing shortage. To understand how these effects affect both

the consumer and the driver side, we next analyze the surpluses of both sides in section

5.2.

5.2. Consumer Surplus and Labor Surplus

With a linear demand assumption (di,t =−α(si,t − 1) + θi,t + εi,t), we calculate consumer

surplus (CS) in a similar method to Cachon et al. (2017) and Cohen et al. (2016): CS =∑
t

∑
i
1
2
· ( θi,t

α
+ 1− si,t) ·min(di,t, FCi,t) In our case, the willingness-to-pay of a consumer

changes with her price sensitivity and the current demand state. For example, in a high

demand state such as adverse weather conditions, consumers are willing to take a service at

a higher price. Besides, consumer surplus increases with served demand and decreases with

prices. We also calculate labor surplus (LS) in a similar fashion to Cachon et al. (2017):

LS =
∑

t

∑
i si,t ·Prob(Serving) ·FCi,t. The expected earning by a single driver conditional

on joining is si,t ·Prob(serving) where Prob(Serving) is 1 if si,t > 1 and 0.5 otherwise.

Next, we report on how consumer surplus changes with consumer’s price sensitivity under

three pricing policies. Counterfactual results are shown in Figure 4. Our first observation is

that, as consumers become less tolerant to a rise in price (i.e., α becomes larger), consumer

surplus decreases under any pricing. This occurs because a high α decreases the number of

matches. As discussed earlier, consumers with lower α are more flexible to choose between

high price and longer wait. Thus, our findings indicate that consumers benefit more from

dynamic pricing policies with their flexibility. However, the rate of decrease diminishes.
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Consumers’ willingness-to-pay is
θi,t
α

+ 1, which is inversely related with α. Price is also

inversely related with α. These relationships diminish the rate of decrease with α. This

suggests that the marginal effect of adding tolerance is salient for more price-sensitive

consumers. Furthermore, by comparing policies, we find that consumers are worse off with

Case 1 than with the other two policies. Price smoothing enables more consumers to be

served by their strategic behavior such as delaying the ride until price drops. However, with

too high price sensitivity, the difference diminishes. We also observe that the difference

between Case 2 and Case 3 is minimal, which indicates that consumers do not benefit from

efficiency generated by adopting anticipated capacity spillovers. This is intuitive because

consumers benefit from their transactions no matter how many drivers are nearby, as long

as their demand is served.

Figure 4 Consumer Surplus

Figure 5 Labor Surplus

We next illustrate the amount of labor surplus generated under various pricing policies.

Our results are presented in Figure 5. Overall, drivers benefit from surge pricing policies

when consumers have low price sensitivity. Since price inversely relates to α (si,t ∝ α),

the expected earnings decrease with α. Despite the negative impact of individual driver’s
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expected earning, the total number of drivers in the focal zone has a positive impact on

labor surplus. In fact, the price sensitivities of participation from NC and UC in the focal

zone positively relate with α (i.e. γNC = −β2 · 2αγFC , γUC = −β3 · 2αγFC and β2, β3 < 0).

As α increases, FC increases at an increasing rate at a certain price. This diminishes the

decreasing rate of labor surplus. However, once α exceeds a certain point, price becomes

one (i.e., no congestion in the zone), which decreases the driver’s probability of serving.

This, in turn, induces a high rate of decrease. The three factors described previously when

combined set up a point of inflection for labor surplus; each pricing policy has a distinct

level of α at which each curve forms its point of inflection. While the point of inflection

under Case 1 is formed when α is about 20, the inflection point appears when α is about 40

under Cases 2 and 3. The different positions indicate that price smoothing (
∑N

j=1wijsj,t)

dilutes the effects of α on labor surplus. That is, by letting the focal price depend on

neighboring prices, drivers’ benefits become less sensitive to α. This suggests that, in gen-

eral, drivers benefit more with less shortage achieved by price smoothing. Nonetheless,

unlike consumers, drivers may benefit from both effectiveness and efficiency, since driver’s

expected earnings may decrease as utilization decreases. Drivers, counterintuitively, are

strictly better off with Case 3 that yields higher average utilization than Case 2. The gap

is more salient when α is greater than the point of inflection. The counterintuitive phe-

nomenon is explained by the information that price contains. Price is the only information

that determines the probability of drivers acquiring riders without utilization level informa-

tion. When price becomes as low as one, it provides no utilization information. Therefore,

in higher alpha ranges that make price become one, the driver’s expected earning reacts

only to shortage but not to utilization as long as demand is present.

To summarize, and building on the conventional literature (i.e., analytical treatment

based on spot pricing, termed as Case 1 in our analyses), both price and capacity spillovers

have a direct effect on surpluses. In particular, (i) consumers benefit from the increase of

possible matches achieved via price smoothing and (ii) drivers benefit only from effective-

ness, regardless of efficiency, when the information that price provides is limited.

6. Discussion and Extensions
6.1. Spillovers Matter

Ride-sharing platforms manage their pricing policies to orchestrate spatially distributed

capacity in serving demand. In this paper, by addressing the spatial dimension, we help



Lee et al.: Surge Pricing on a Service Platform under Spatial Spillovers
BOSTON UNIVERSITY Questrom School of Business 27

fill a gap in empirical revenue management literature where most studies rely on the com-

peting results from spot pricing and ignore capacity spillovers. With a spatial econometric

specification, we estimate the extent to which spillovers are associated with price and ana-

lyze surpluses under different pricing policies. Our analyses provide a variety of insights

for designing and managing service platforms. We show that a surge pricing strategy that

utilizes price smoothing helps reduce average capacity shortage compared to a spot surge

pricing strategy. Through price smoothing, platforms can effectively maintain adequate,

spatially distributed capacity. Moreover, such high service rates enable the platform to

benefit both consumers (riders) and drivers by increasing the ecosystem in the long-run. In

other words, consumer benefits can spread to ride-share drivers (Parker and Van Alstyne

2005). In addition to the long-run positive network effect, drivers benefit from the lower

shortage achieved in the short-run, even when drivers have limited access to the utilization

information. Our analysis shows that although a strategy that incorporates the anticipated

capacity spillovers (Case 2) generates higher average capacity utilization than the strat-

egy without anticipated capacity spillovers (Case 3), drivers fare better in Case 3. This

has important implications for platform designers. By limiting the provision of utilization

information to drivers, a platform can achieve risk-less growth with a spatial surge pricing

strategy.

6.2. Updating Speed Matters

We have shown that the impact of spatial pricing strategies varies with consumer’s price

sensitivity. Ride-sharing platforms digitize all transactions, which helps the firm to quickly

determine demand and capacity. In our data set, Uber adjusts its price as quickly as

5 seconds based on the data regarding demand and capacity data. Our counterfactual

analysis indicates the impact of high-frequency data in pricing strategies. Uber currently

follows Case 2 as their pricing strategy. Case 3 uses a more aggressive pricing strategy and

always outperforms Case 2 in all price elasticity conditions (see Figures 4 and 5). Moreover,

it is clear that Case 2’s performance nears that of Case 3’s performance, and that Cases

2 and 3 outperform Case 1 (spot pricing). Arguably, an explanation for this closeness

between Cases 2 and 3 is that the algorithm is updating the state variables (e.g., capacity

in neighbouring zones) and customer demand every few seconds. Even though Case 2 is

not aggressive enough, Uber’s algorithm can catch up and come close to the aggressive

performance (i.e., Case 3) well before the drivers and consumers can update their own
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decision. Typically, drivers take minutes to update their decision to participate based on

Uber’s algorithm, and this process is an order of magnitude slower than the algorithm.

Our results show key parameters for further tuning the algorithms are α, θ, and the γs.

6.3. Limitations and Future Work

Some of the key results are driven by our assumptions. First, we assume that a driver esti-

mates expected earnings based only on the price information. In practice, however, each

driver also learns from their previous experiences in estimating the probability of partici-

pating. Thus, the results on labor surplus may change with the driver’s learning about the

relationship between pricing and demand. Such learning could help incorporate efficiency

into the long-run labor surplus. Second, we analyze performance under the assumption

that no alternatives exist for both consumers and drivers. However, in ride-sharing scenar-

ios where drivers and consumers can easily switch to another platform, it is important to

consider how efficiently a match is made since efficiency matters in the long-term partici-

pation decision of both drivers and consumers. Although competition among platforms for

drivers is beyond the scope for this paper, future work should consider how competition

can best be analyzed when determining the optimal pricing policy.
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Appendix A: Proof of Equilibrium Price

The surge multiplier does not decrease below 1 even in case of low utilization, but only increases up to smax

in the case of congestion (1 ≥ si,t ≥ smax). Therefore, we are only interested in the equilibrium when the

demand state is greater than or equal to the current focal capacity (i.e. E[di,t | si,t = 1]≥ FCi,t). Hence, we

can simplify the cost function Vi,t(FCi,t) as follows:

Vi,t(FCi,t) = E[p ·max(0, di,t−FCi,t) +h ·FCi,t+1] = p · (E[di,t]−FCi,t) +h ·E[FCi,t+1]

Then, the first order condition (FOC) is:

∂Vi,t(FCi,t)

∂si,t
= p · ∂E[di,t]

∂si,t
+h · ∂FCi,t+1

∂si,t
= 0

(i) If the endogenous demand is still greater than the focal capacity with any price s∗i,t (i.e. di,t(s
∗
i,t)≥ FCi,t),

then s∗i,t = smax

(ii) However, if the demand becomes lower than the focal capacity with a certain price s∗i,t (i.e. di,t(s
∗
i,t)<

FCi,t), then the FOC is:

−pα+h((FCi,t +α · s∗i,t− θi,t) · γFC +α(γFC · s∗i,t + δFC) +NCi,t · γNC +UCt · γUC) = 0

s∗i,t =
−pα+hαδFC −hθi,tγFC +hγFCFCi,t +hγNCNCi,t +hγUCUCt

−2hαγFC

=
p−hδFC

2hγFC

− 1

2α
FCi,t−

γNC

2αγFC

NCi,t−
γUC

2αγFC

UCt +
θi,t
2α

�

Appendix B: Description of Data

B.1. Multiple Observation Points and Average Focal Capacity Level

Reproduced from Jiang et al. (2018)
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B.2. Travel Time from One Zone to Another Zone

B.3. Example of Trend of Total Drivers

B.4. Descriptive Statistics

Summary Statistics Correlation

Min. Max. Mean Std. Dev si,t FCi,t NCi,t UCt

si,t 1.0000 3.3702 1.0467 0.1458 1 -0.08 -0.13 0.21

FCi,t 0.00 615.00 30.74 41.41 1 0.65 -0.37

NCi,t 0.00 155.00 31.63 25.24 1 -0.64

UCt 0.00 12714.00 7426.02 2660.31 1
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1. Robustness Check with Different Time-intervals

Table A1 Relationship between capacity levels and surge multiplier with different time intervals

Dependent Variable: Surge Multiplier

15-minute Interval 60-minute Interval
(N = 313,212) (N = 78,432)

Spatial Dependency 0.90** 0.87**
(0.012) (0.015)

Focal Capacity 6.52× 10−6 2.82× 10−5

(8.32× 10−5) (3.05× 10−5)

Neighbor Capacity −8.80× 10−4** −3.10× 10−4**
(1.82× 10−4) (1.41× 10−4 )

Untapped Capacity −3.49× 10−6** −1.18× 10−6**
(1.35× 10−6) (4.08× 10−7 )

Controls included included

Log-likelihood 144053.10 38599.65

Notes. Controls include Hourt, Weekendt, and Weathert . Robust standard errors clustered by zone are in parentheses.
+p < 0.1; ∗p < 0.05; ∗ ∗ p < 0.01.

1
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2. Robustness Check with Different W s

Table A2 Relationship between capacity levels and surge multiplier with different spatial weight matrices

Dependent Variable: Surge Multiplier

W1 W2 W3
(N = 156,692) (N = 156,692) (N = 156,692)

FE RE FE RE FE RE
Spatial Dependency 0.89** 0.89** 0.85** 0.85** 0.87** 0.87**

(0.013) (0.013) (0.014) (0.014) (0.015) (0.015)

Focal Capacity 1.22× 10−5 1.06× 10−5 8.27× 10−5 8.39× 10−5 1.11× 10−4 + 1.10× 10−4 +

(4.99× 10−5) (4.82× 10−5) (5.32× 10−5 ) (5.15× 10−5 ) (5.68× 10−5 ) (5.52× 10−5 )

Neighbor Capacity −4.96× 10−4** −4.72× 10−4** −3.85× 10−4** −3.76× 10−4** −6.84× 10−4** −6.65× 10−4**
(1.03× 10−4) (1.00× 10−4 ) (7.41× 10−5 ) (7.18× 10−5 ) (1.08× 10−4 ) (1.04× 10−4 )

Untapped Capacity −1.89× 10−6* −1.75× 10−6* −4.90× 10−7 −4.30× 10−7 −2.42× 10−6** −2.31× 10−6**
(7.31× 10−7) (7.18× 10−7 ) (6.16× 10−7 ) (6.07× 10−7 ) (7.32× 10−7 ) (7.16× 10−7 )

Controls included included included included included included

Log-likelihood 75369.06 74919.32 77648.74 77199.68 75132.59 74678.40

Notes. Controls include Hourt, Weekendt, and Weathert . Robust standard errors clustered by zone are in parentheses.
FE: Fixed Effects, RE: Random Effects
+p < 0.1; ∗p < 0.05; ∗ ∗ p < 0.01.

3. Robustness Check with IVs

Table A3 GMM approach with FCi,t−8 as IV

Dependent Variable: Surge Multiplier

30-minute Interval
(N = 156,692)

Spatial Dependency 1.03**
(0.026)

Focal Capacity −2.14× 10−5**
(3.05× 10−5)

Neighbor Capacity −7.22× 10−5**
(1.36× 10−5 )

Untapped Capacity −3.67× 10−7**
(3.29× 10−8 )

Controls included

Notes. Controls include Hourt, Weekendt, and Weathert . Robust standard errors clustered by zone are in parentheses.
+p < 0.1; ∗p < 0.05; ∗ ∗ p < 0.01.
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4. Demand Sensitivity (Aggregate price sensitivity of demand α set at 50)

Figure A1 Average Capacity Shortage (Less is Better)

Figure A2 Average Utilization (More is Better)
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Figure A3 Consumer Surplus

Figure A4 Labor Surplus
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