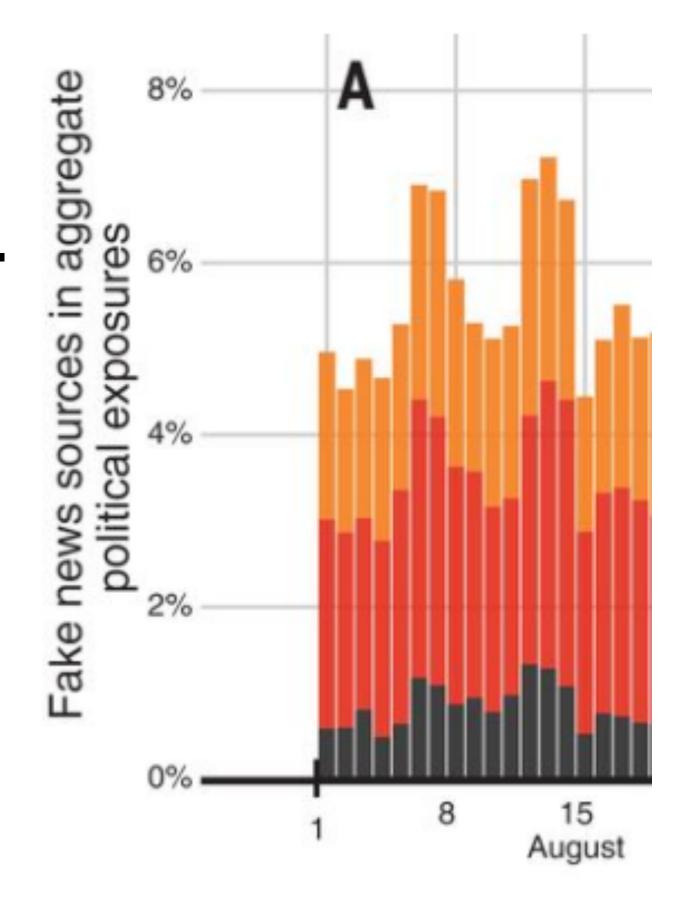
Modeling and Measuring Expressed (Dis)belief in (Mis)information

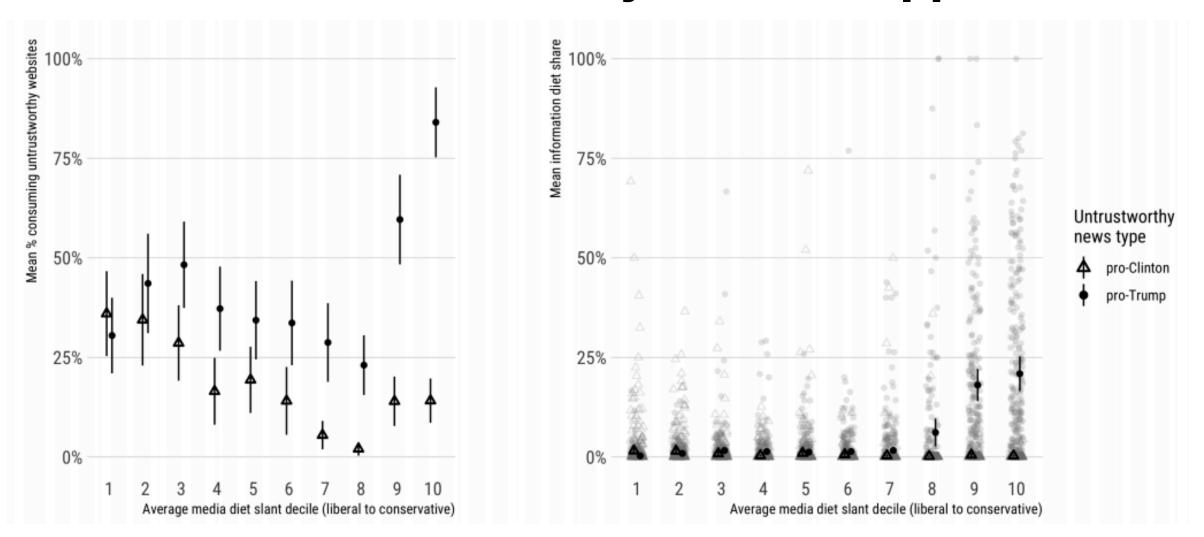
Shan Jiang, Miriam Metzger, Andrew Flanagin, Christo Wilson



(Mis)information

2016 US Presidential Election:

• 6% of all news consumptions are "fake news" [1].


[1] Grinberg, N.; Joseph, K.; Friedland, L.; Swire-Thompson, B.; and Lazer, D. 2019. Fake news on twitter during the 2016 us presidential election. *Science*.

3

2016 US Presidential Election:

- 6% of all news consumptions are "fake news" [1].
- 44% of Americans visited at least one untrustworthy website [2].

[2] Guess, A.; Nyhan, B.; and Reifler, J. 2018. Selective exposure to misinformation: Evidence from the consumption of fake news during the 2016 us presidential campaign. *ERC*.

5

2016 US Presidential Election:

- 6% of all news consumptions are "fake news" [1].
- 44% of Americans visited at least one untrustworthy website [2].

COVID-19 Pandemic:

- Chinese/US biological weapon.
- 5G tower emission.
- Drinking bleach.

Background: believe or disbelieve?

2016 US Presidential Election:

- 6% of all news consumptions are "fake news" [1].
- 44% of Americans visited at least one untrustworthy website [2].

Believe or disbelieve?

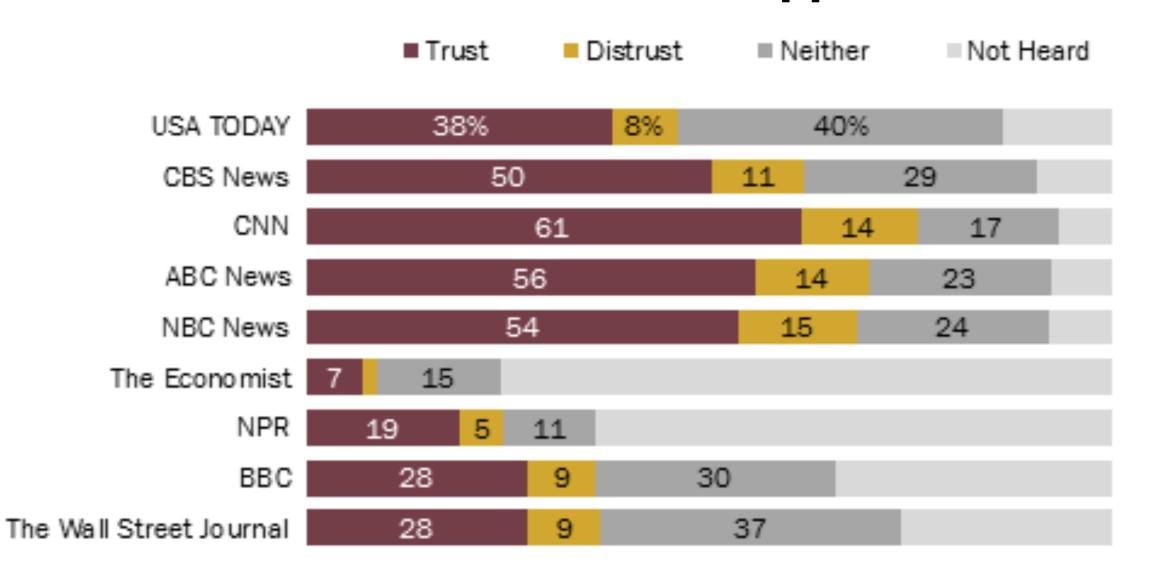
6

COVID-19 Pandemic:

- Chinese/US biological weapon.
- 5G tower emission.
- Drinking bleach.

Background: believe or disbelieve?

• People use more words indicating their awareness of misinformation in response to false claims than truthful ones [3].


American [states] (texas, california, florida)	0.053
Administration [n.] (attorney, secretary, minister)	0.049
-0.045	Filler [informal from LIWC] (blah, woah, whoa)
-0.045	Fake [very fake] (hoax, scam, conspiracy)
-0.046	Fake [somewhat fake] (propaganda, rumor, distortion)
-0.046	See [perceptual process from LIWC] (see, look, search)
-0.047	Minority [race and sex] (black, gay, transgender)
-0.049	Emoji [angry] (💎, 🔹 , 🚵)
-0.054	Swear [informal and hate majority] (moron, fool, loser)
-0.054	Negative [v.] (sicken, offend, disappoint)

[3] Jiang, S., and Wilson, C. 2018. Linguistic signals under misinformation and fact-checking: Evidence from user comments on social media. *PACMHCI (CSCW)*.

Background: believe or disbelieve?

- People use more words indicating their awareness of misinformation in response to false claims than truthful ones [3].
- People believe in some news outlets more than others [4].

[4] Anderson, J., and Rainie, L. 2017. The future of truth and misinformation online. *Pew Research Center*.

8

Background: research questions

Computational methods to model and measure (dis)belief.

9

Background: research questions

Computational methods to model and measure (dis)belief.

10

- Overall prevalence of (dis)belief.
- Effect of time.
- Effect of fact-checking.

• ...

Background: social media comments

Claim

We have now Tested more than 5 Million People. That is more than any other country in the World, and even more than all major countries combined!

11

Background: social media comments

Claim

We have now Tested more than 5 Million People. That is more than any other country in the World, and even more than all major countries combined!

12

Belief

That is a vast amount of testing in such a short period of time!

Thank you Mr. President for working so hard for all Americans.

Background: social media comments

Claim

We have now Tested more than 5 Million People. That is more than any other country in the World, and even more than all major countries combined!

13

Belief

That is a vast amount of testing in such a short period of time!

Thank you Mr. President for working so hard for all Americans.

Disbelief

This is fewer tests than just Russia, Germany, and Italy have done.

...it's plain wrong. Something in the order of 30million global tests done.

Background: steps

- Build a small and labeled dataset.
- Conduct experiments to model the dataset.
- Apply models on a large and unlabeled dataset.

14

Data: comments for claims

 Use fact-checks from PolitiFact between Jan to Jun, 2019, whose claims were originated from Twitter.

Data: comments for claims

 Use fact-checks from PolitiFact between Jan to Jun, 2019, whose claims were originated from Twitter.

 Query an archived 1% sample of tweets and find all comments to the claim tweets.

16

• 18 claims, 6,809 comments.

Data: annotating (dis)belief

• Each annotator is asked to provide binary labels for each comment: disbelief (0/1) and belief (0/1).

Data: annotating (dis)belief

• Each annotator is asked to provide binary labels for each comment: disbelief (0/1) and belief (0/1).

18

...it's plain wrong. Something in the order of 30million global tests done.

disbelief: 1

belief: 0

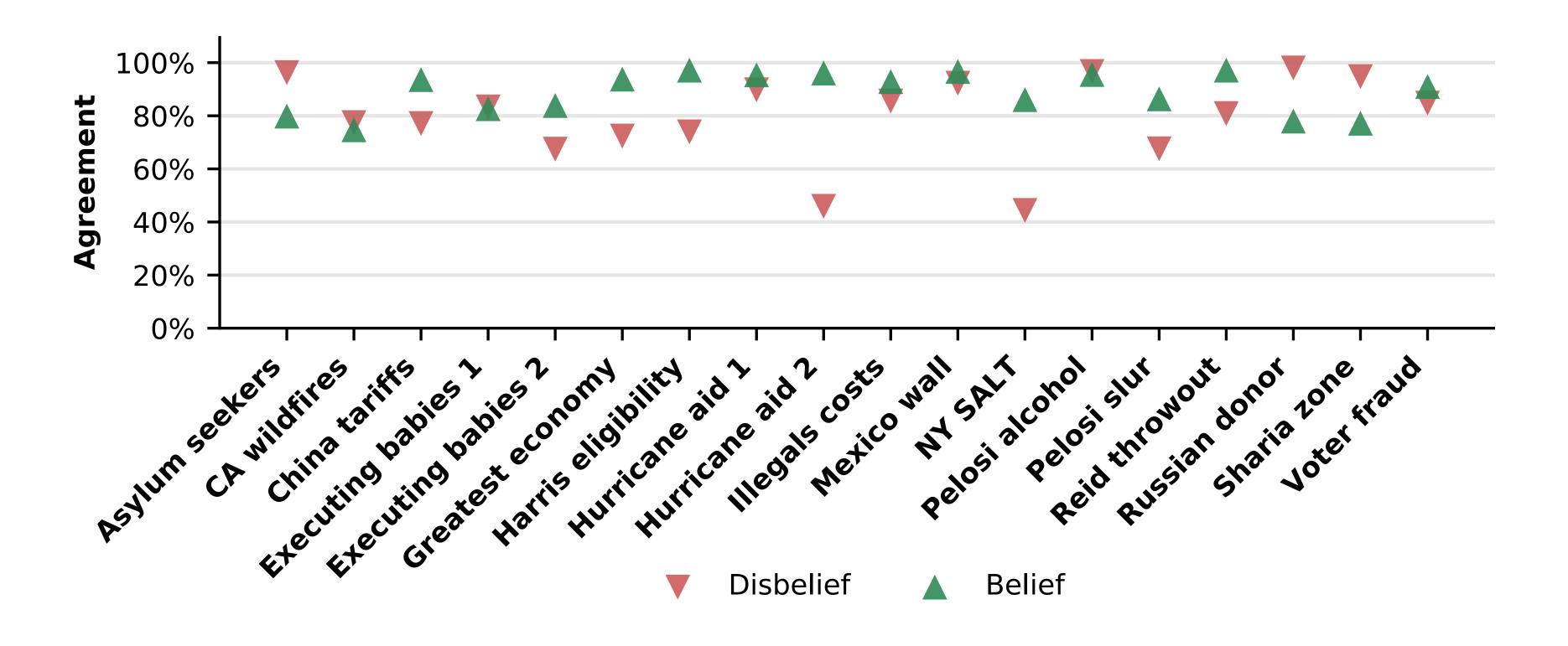
I just want a President who doesn't tell the Americans to drink bleach.

disbelief: 0

belief: 0

Data: annotating (dis)belief

• Each annotator is asked to provide binary labels for each comment: disbelief (0/1) and belief (0/1).


19

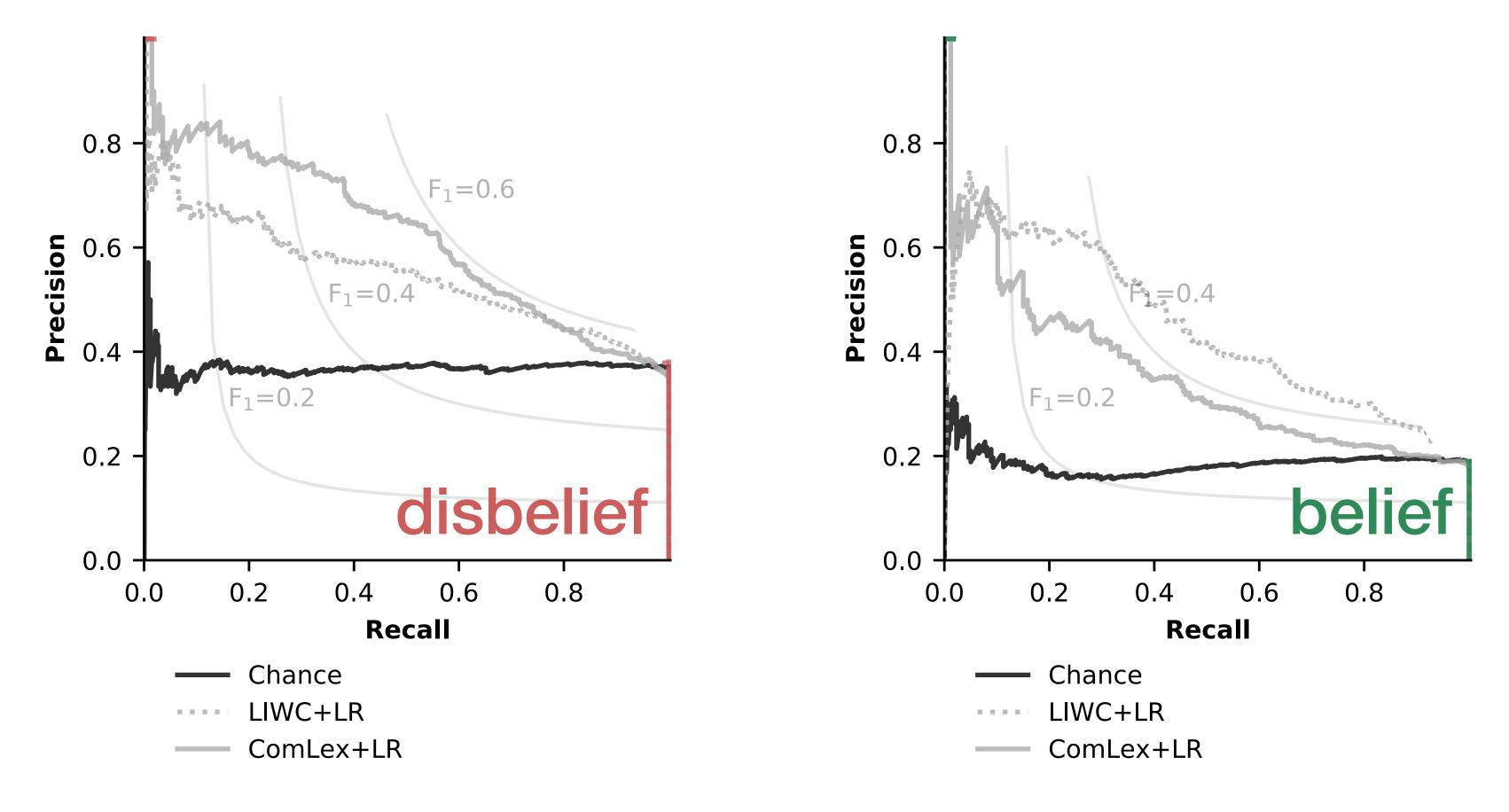
- 2 annotators for each claim.
- 3rd annotator to break ties.

Data: inter-annotator agreement

Of 36 claims * labels: 24 above 80%, 32 above 70%.

20

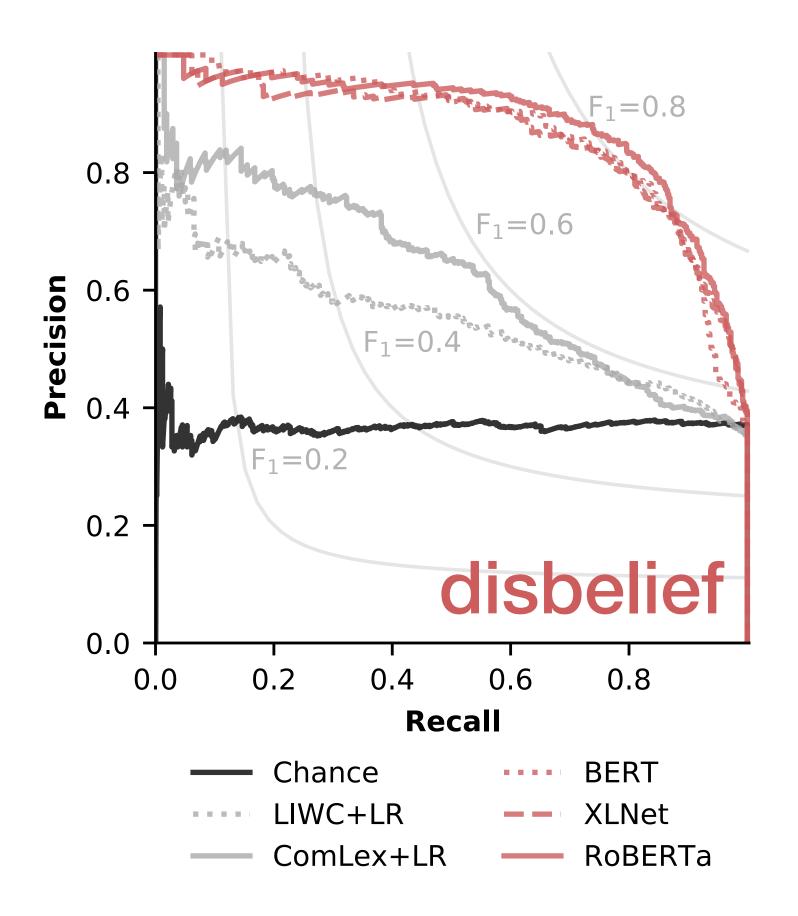
Model: lexicon feature + logistic regression

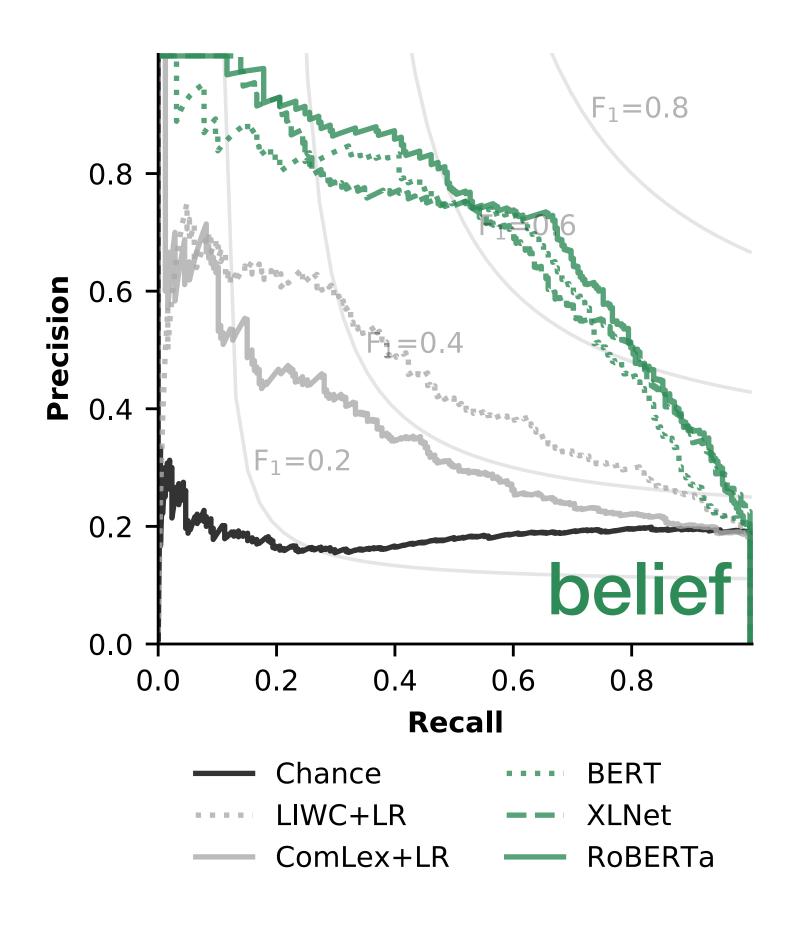

21

LIWC / ComLex + logistic regression

Model: lexicon feature + logistic regression

LIWC / ComLex + logistic regression


Model: sequence feature + transfer learning


BERT / XLNet / RoBERTa

Model: sequence feature + transfer learning

BERT / XLNet / RoBERTa

• Threshold τ : 1 if $\mathbb{P} > \tau$, 0 otherwise.

- ullet Threshold au: 1 if $\mathbb{P} > au$, 0 otherwise.
- ullet Prevalence of (dis)belief b.

underlying prevalence

E(b)

estimated prevalence

 $\mathbb{E}(\hat{b})$

27

- ullet Threshold au: 1 if $\mathbb{P} > au$, 0 otherwise.
- ullet Prevalence of (dis)belief b.

$$\mathbb{E}(b) = \frac{TP(\tau) + FN(\tau)}{N}$$
 sample size

- ullet Threshold au: 1 if $\mathbb{P} > au$, 0 otherwise.
- ullet Prevalence of (dis)belief b.

total predicted positive

28

$$\frac{TP(\tau) + FP(\tau)}{N} = \mathbb{E}(\hat{b})$$
 sample size

- Threshold τ : 1 if $\mathbb{P} > \tau$, 0 otherwise.
- ullet Prevalence of (dis)belief b.

$$\mathbb{E}(b) = \frac{TP(\tau) + FN(\tau)}{N} = \frac{TP(\tau) + FP(\tau)}{N} = \mathbb{E}(\hat{b})$$

29

- ullet Threshold au: 1 if $\mathbb{P} > au$, 0 otherwise.
- ullet Prevalence of (dis)belief b.

• Choose τ in the training set for $FN(\tau) = FP(\tau)$.

30

- ullet Apply au on the testing set.
- Test $FN(\tau) = FP(\tau)$ as null hypothesis.

Model: evaluation

Classifier		Disbelief			Belief					
Classifier	Threshold $ au$	Unbias?	Binary-F ₁	Macro-F ₁	Micro-F ₁	Threshold $ au$	Unbias?	Binary-F ₁	Macro-F ₁	Micro-F ₁
Chance	0.654	✓	0.354	0.494	0.533	0.814	✓	0.170	0.490	0.691
LIWC+LR	0.415	✓	0.548	0.647	0.675	0.306	√	0.450	0.666	0.806
ComLex+LR	0.364	✓	0.586	0.683	0.712	0.279	✓	0.371	0.612	0.761
BERT	0.374	✓	0.801	0.840	0.850	0.646	X	0.620	0.773	0.877
XLNet	0.514	✓	0.798	0.839	0.850	0.593	X	0.646	0.785	0.877
RoBERTa	0.436	✓	0.817	0.855	0.864	0.451	✓	0.671	0.800	0.884

Model: evaluation

Classifier		Disbelief			Belief					
Classifier	Threshold $ au$	Unbias?	Binary-F ₁	Macro-F ₁	Micro-F ₁	Threshold $ au$	Unbias?	Binary-F ₁	Macro-F ₁	Micro-F ₁
Chance	0.654	✓	0.354	0.494	0.533	0.814	√	0.170	0.490	0.691
LIWC+LR ComLex+LR	0.415 0.364	/	0.548 0.586	0.647 0.683	0.675 0.712	0.306 0.279	/	0.450 0.371	0.666 0.612	0.806 0.761
BERT XLNet De DEDTe	0.374 0.514		0.801	0.840 0.839	0.850	0.646 0.593	X X	0.620 0.646	0.773	0.877
RoBERTa	0.436	✓	0.817	0.855	0.864	0.451	✓	0.671	0.800	0.884

• Highest F1 scores.

Model: evaluation

Classifor		Disbelief			Belief					
Classifier	Threshold $ au$	Unbias?	Binary-F ₁	Macro-F ₁	Micro-F ₁	Threshold $ au$	Unbias?	Binary-F ₁	Macro-F ₁	Micro-F ₁
Chance	0.654	√	0.354	0.494	0.533	0.814	√	0.170	0.490	0.691
LIWC+LR ComLex+LR	0.415 0.364	/	0.548 0.586	0.647 0.683	0.675 0.712	0.306 0.279	/	0.450 0.371	0.666 0.612	0.806 0.761
BERT XLNet RoBERTa	0.374 0.514 0.436		0.801 0.798 0.817	0.840 0.839 0.855	0.850 0.850 0.864	0.646 0.593 0.451	X	0.620 0.646 0.671	0.773 0.785 0.800	0.877 0.877 0.884

- Highest F1 scores.
- Unbiased (p<0.01 w/ Bonferroni correction)-

33

Measurement: dataset

the entire archive of PolitiFact & Snopes

 Fact-checks from PolitiFact between Jan to Jun 2019, whose claims were originated from Twitter.
 Twitter, Facebook & YouTube

[3] Jiang, S., and Wilson, C. 2018. Linguistic signals under misinformation and fact-checking: Evidence from user comments on social media. *PACMHCI (CSCW)*.

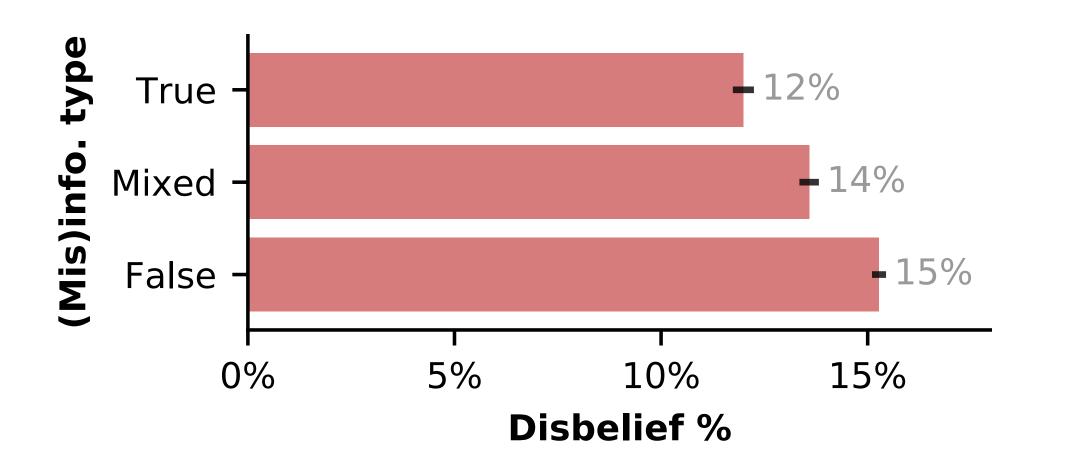
34

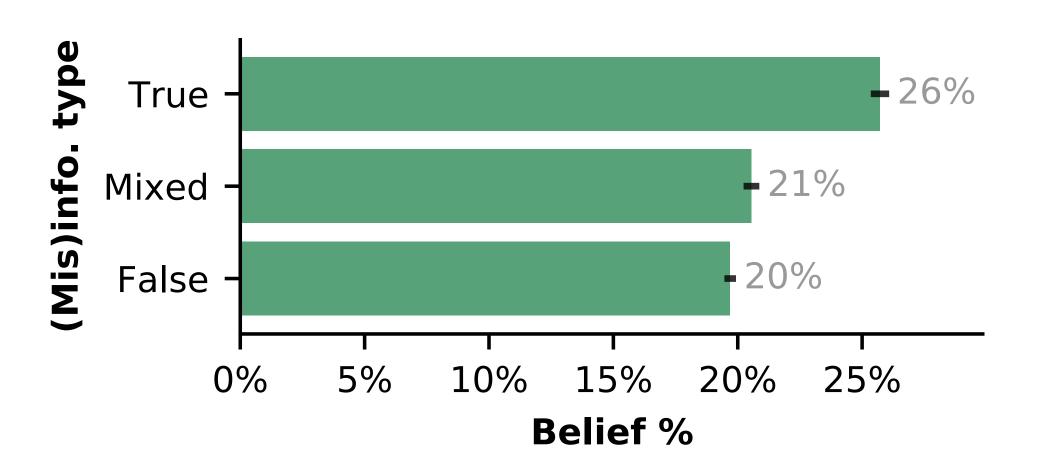
Measurement: dataset

the entire archive of PolitiFact & Snopes

 Fact-checks from PolitiFact between Jan to Jun 2019, whose claims were originated from Twitter.

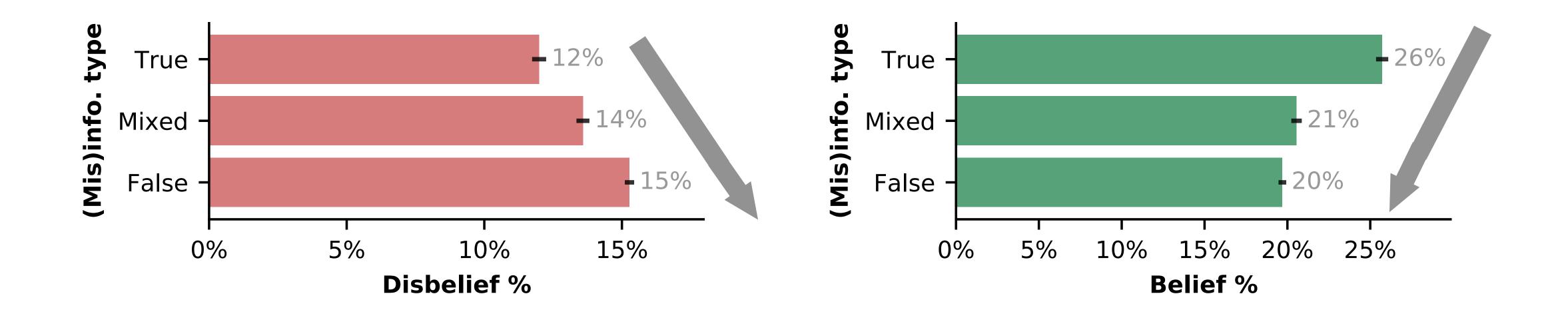
Twitter, Facebook & YouTube


- Query APIs and find all comments to the claim.
- 18 claims, 6,809 comments.
 5,303 2,614,374


[3] Jiang, S., and Wilson, C. 2018. Linguistic signals under misinformation and fact-checking: Evidence from user comments on social media. *PACMHCI (CSCW)*.

35

Measurement: overall prevalence



• 12% - 15% of disbelief, 20% - 26% of belief.

Measurement: overall prevalence

- 12% 15% of disbelief, 20% 26% of belief.
- With veracity decreasing, disbelief increases and belief decreases.

37

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

prevalence of (dis)belief (%)

$$\hat{b} = \beta_0 + \beta_1 \cdot \Delta_{C_m,m} + \beta_2 \cdot \mathbb{I}_{+}(\Delta_{F_m,m}) + \epsilon$$

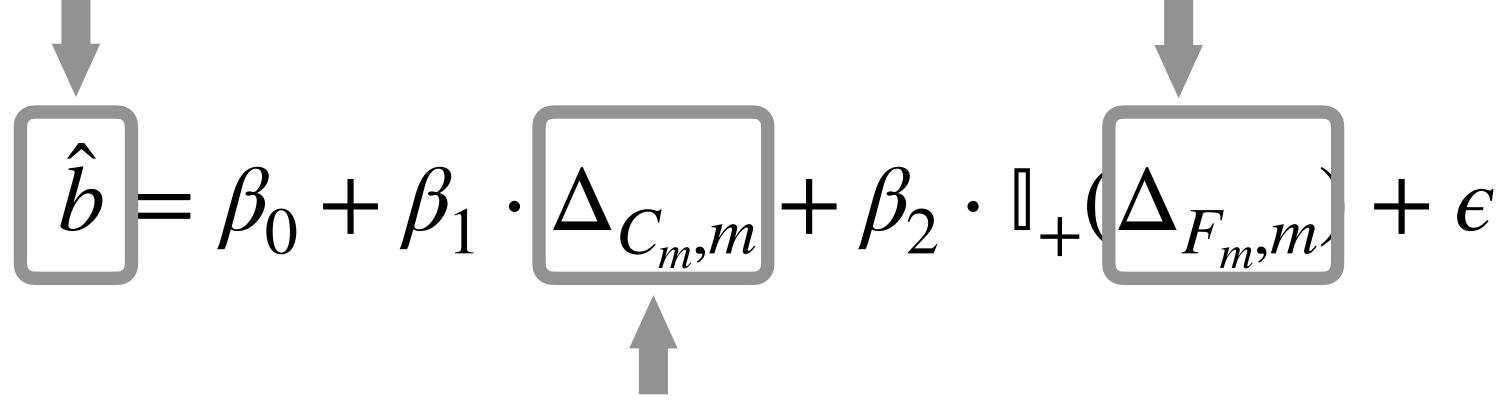
39

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

prevalence of (dis)belief (%)

$$\hat{b} = \beta_0 + \beta_1 \cdot \Delta_{C_m,m} + \beta_2 \cdot \mathbb{I}_{+}(\Delta_{F_m,m}) + \epsilon$$

40

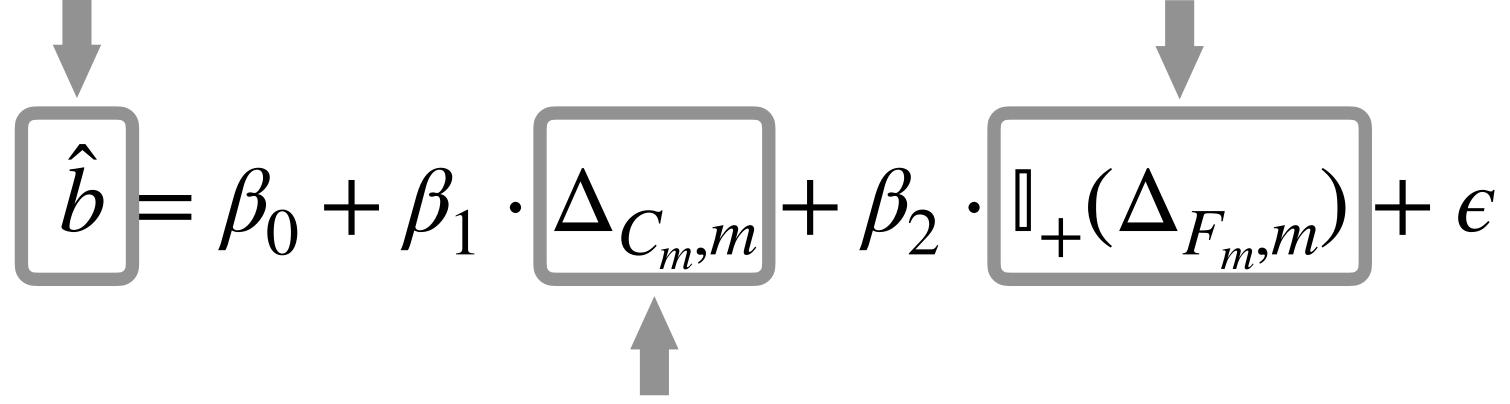

time difference between the comment and its claim (day)

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

prevalence of (dis)belief (%)

time difference between the comment and its fact-check (day)

41


time difference between the comment and its claim (day)

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

prevalence of (dis)belief (%)

if a comment was posted before/after fact-check (1)

time difference between the comment and its claim (day)

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

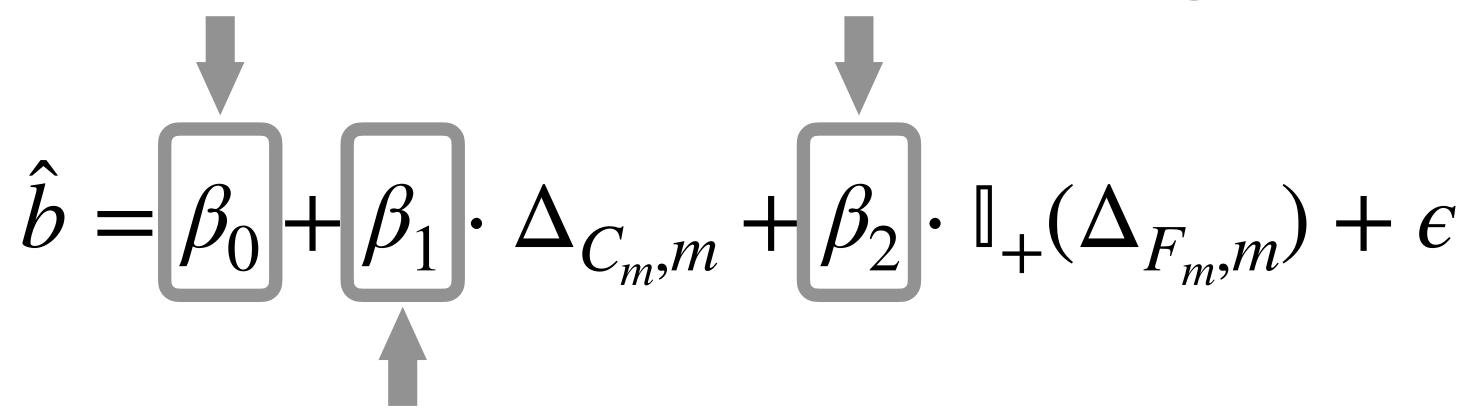
initial prevalence (%)

$$\hat{b} = \beta_0 + \beta_1 \cdot \Delta_{C_m,m} + \beta_2 \cdot \mathbb{I}_{+}(\Delta_{F_m,m}) + \epsilon$$

43

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

initial prevalence (%)


$$\hat{b} = \beta_0 + \beta_1 \cdot \Delta_{C_m,m} + \beta_2 \cdot \mathbb{I}_{+}(\Delta_{F_m,m}) + \epsilon$$

the effect of time (%/day)

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.

initial prevalence (%) effect of fact-checking (%)

45

the effect of time (%/day)

- Effects of time and fact-checking for false claims.
- ullet Prevalence of (dis)belief b.
- OLS for model estimation.

$$\hat{b} = \beta_0 + \beta_1 \cdot \Delta_{C_m,m} + \beta_2 \cdot \mathbb{I}_+(\Delta_{F_m,m}) + \epsilon$$

Parameters	Disbelief		Belief	
	Estimation	<i>p</i> -value	Estimation	<i>p</i> -value
$\hat{eta_0}$	$+1.52 \times 10^{-1}$	***	$+1.98 \times 10^{-1}$	***
$\hat{\beta_1}$	$+9.96 \times 10^{-6}$	***	-2.19×10^{-5}	***
$\hat{eta_2}$	$+5.00 \times 10^{-2}$	***	-3.41×10^{-2}	***
# of samples	1,395,293		1,395,293	

Parameters	Disbelief		Belief	
	Estimation	p-value	Estimation	<i>p</i> -value
$\hat{eta_0}$	$+1.52 \times 10^{-1}$	***	$+1.98 \times 10^{-1}$	***
$\hat{eta_1}$	$+9.96 \times 10^{-6}$	***	-2.19×10^{-5}	***
$\hat{eta_2}$	$+5.00 \times 10^{-2}$	***	-3.41×10^{-2}	***
# of samples	1,395,293		1, 395, 293	

48

- disbelief increases 0.001%/day.
- belief decreases 0.002%/day.

For false claims:

Parameters	Disbelief		Belief	
	Estimation	p-value	Estimation	<i>p</i> -value
$\hat{eta_0}$	$+1.52 \times 10^{-1}$	***	$+1.98 \times 10^{-1}$	***
$\hat{eta_1}$	$+9.96 \times 10^{-6}$	***	-2.19×10^{-5}	***
$\hat{\beta_2}$	$+5.00 \times 10^{-2}$	***	-3.41×10^{-2}	***
# of samples	1,395,293		1, 395, 293	

49

- disbelief increases 0.001%/day.
- belief decreases 0.002%/day.

For false claims:

- disbelief increases 5% after fact-check.
- belief decreases 3.4% after fact-check.

Discussion: limitations

• Topical bias: mostly political issues.

Discussion: limitations

- Topical bias: mostly political issues.
- Proxy validity: modeling only expressed (dis)belief.

51

Thank you!

Please send questions to: sjiang@ccs.neu.edu

Data and code available at: misinfo.shanjiang.me

